-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval_retrieval.py
77 lines (65 loc) · 2.81 KB
/
eval_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import argparse
from collections import OrderedDict
import os
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
from retrieval import coco_retrieval_evaluation, flickr_retrieval_evaluation
import models
from tokenizer import SimpleTokenizer
def get_args_parser():
parser = argparse.ArgumentParser(description='A-CLIP retrieval evaluations', add_help=False)
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--batch-size', default=256, type=int, help='batch_size')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
parser.add_argument(
"--coco_data_dir", default="./data/coco2017", type=str, help="coco dataset"
)
parser.add_argument(
"--flickr-data-dir", default="./data/flickr", type=str, help="flickr dataset"
)
return parser
def main(args):
# optionally resume from a checkpoint (takes precedence over autoresume)
if args.resume:
ckpt_path = args.resume
elif os.path.isfile(os.path.join(args.output_dir, 'checkpoint_best.pt')):
ckpt_path = os.path.join(args.output_dir, 'checkpoint_best.pt')
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
# create model
old_args = ckpt['args']
print("=> creating model: {}".format(old_args.model))
model = getattr(models, old_args.model)()
model.cuda()
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {})".format(args.resume, ckpt['epoch']))
cudnn.benchmark = True
args.distributed = False
tokenizer = SimpleTokenizer()
val_transform = transforms.Compose(
[
transforms.Resize(224, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
lambda x: x.convert("RGB"),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
res = coco_retrieval_evaluation(model, val_transform, tokenizer, args)
print("COCO results:", res[0])
res = flickr_retrieval_evaluation(model, val_transform, tokenizer, args)
print("Flickr results:", res[0])
if __name__ == '__main__':
parser = argparse.ArgumentParser('A-CLIP retrieval evaluations', parents=[get_args_parser()])
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)