-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_mnist.py
159 lines (127 loc) · 5.7 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import print_function
import argparse
import logging
import numpy as np
import mxnet as mx
from mxnet import gluon, autograd
from mxnet.gluon import nn
from mxboard import SummaryWriter
logging.basicConfig(level=logging.DEBUG)
# Parse CLI arguments
parser = argparse.ArgumentParser(description='MXNet Gluon MNIST Example')
parser.add_argument('--batch-size', type=int, default=100,
help='batch size for training and testing (default: 100)')
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--cuda', action='store_true', default=False,
help='Train on GPU with CUDA')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
opt = parser.parse_args()
# define network
net = nn.HybridSequential()
with net.name_scope():
net.add(nn.Dense(128, activation='relu'))
net.add(nn.Dense(64, activation='relu'))
net.add(nn.Dense(10))
# data
def transformer(data, label):
data = data.reshape((-1,)).astype(np.float32) / 255
return data, label
train_data = gluon.data.DataLoader(
gluon.data.vision.MNIST('./data', train=True, transform=transformer),
batch_size=opt.batch_size, shuffle=True, last_batch='discard')
val_data = gluon.data.DataLoader(
gluon.data.vision.MNIST('./data', train=False, transform=transformer),
batch_size=opt.batch_size, shuffle=False)
def test(ctx):
metric = mx.metric.Accuracy()
for data, label in val_data:
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
metric.update([label], [output])
return metric.get()
def train(epochs, ctx):
# Collect all parameters from net and its children, then initialize them.
net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
net.hybridize()
# Trainer is for updating parameters with gradient.
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': opt.lr, 'momentum': opt.momentum})
metric = mx.metric.Accuracy()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
# collect parameter names for logging the gradients of parameters in each epoch
params = net.collect_params()
param_names = params.keys()
# define a summary writer that logs data and flushes to the file every 5 seconds
sw = SummaryWriter(logdir='./logs', flush_secs=5)
global_step = 0
for epoch in range(epochs):
# reset data iterator and metric at begining of epoch.
metric.reset()
for i, (data, label) in enumerate(train_data):
# Copy data to ctx if necessary
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
# Start recording computation graph with record() section.
# Recorded graphs can then be differentiated with backward.
with autograd.record():
output = net(data)
L = loss(output, label)
sw.add_scalar(tag='cross_entropy', value=L.mean().asscalar(), global_step=global_step)
global_step += 1
L.backward()
# take a gradient step with batch_size equal to data.shape[0]
trainer.step(data.shape[0])
# update metric at last.
metric.update([label], [output])
if i % opt.log_interval == 0 and i > 0:
name, acc = metric.get()
print('[Epoch %d Batch %d] Training: %s=%f' % (epoch, i, name, acc))
# Log the first batch of images of each epoch
if i == 0:
sw.add_image('minist_first_minibatch', data.reshape((opt.batch_size, 1, 28, 28)), epoch)
if epoch == 0:
sw.add_graph(net)
grads = [i.grad() for i in net.collect_params().values()]
assert len(grads) == len(param_names)
# logging the gradients of parameters for checking convergence
for i, name in enumerate(param_names):
sw.add_histogram(tag=name, values=grads[i], global_step=epoch, bins=1000)
name, acc = metric.get()
print('[Epoch %d] Training: %s=%f' % (epoch, name, acc))
# logging training accuracy
sw.add_scalar(tag='train_acc', value=acc, global_step=epoch)
name, val_acc = test(ctx)
# logging the validation accuracy
print('[Epoch %d] Validation: %s=%f' % (epoch, name, val_acc))
sw.add_scalar(tag='valid_acc', value=val_acc, global_step=epoch)
sw.close()
if __name__ == '__main__':
if opt.cuda:
ctx = mx.gpu(0)
else:
ctx = mx.cpu()
train(opt.epochs, ctx)
print('finished training')