-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_process.py
175 lines (118 loc) · 4.64 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import tensorflow as tf
from tensorflow.python.keras.preprocessing.text import Tokenizer
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
import numpy as np
import json
import os
import re
from gensim.models import Word2Vec
from configs import DEFINES
def get_embedding_matrix(data_path, embedding_path, i2t):
if os.path.isfile(embedding_path):
return np.load(open(embedding_path, 'rb')).astype(np.float32)
else:
make_embedding(data_path, embedding_path, i2t)
return np.load(open(embedding_path, 'rb')).astype(np.float32)
def make_embedding(data_path, embedding_path, i2t):
all_sent = []
token_sent = []
filter = re.compile("([~.,!?\"':;)(<=>&%$#@_\]\[\+\-\*\^])")
data = json.load(open(data_path, 'r', encoding = 'utf-8'))
for v in data.values():
all_sent.extend(v)
for v in all_sent:
token_sent.append(re.sub(filter,"",v).split())
model = Word2Vec(token_sent,
size = DEFINES.embedding_dim,
window=5,
min_count=1,
workers=4,
sg=1,
iter = 10,
sample = 1e-3)
embedding_matrix = special_token_embedding(model)
unk = embedding_matrix[3]
for i, t in i2t.items():
if i>3:
if t in model.wv.vocab:
embedding_matrix.append(model.wv.word_vec(t))
else:
embedding_matrix.append(unk)
np.save(open(embedding_path, 'wb'), np.stack(embedding_matrix))
def special_token_embedding(model):
pad = np.zeros(shape = (DEFINES.embedding_dim), dtype=np.float32)
start = np.random.uniform(low=model.wv.vectors.min(), high=model.wv.vectors.max(), size=(DEFINES.embedding_dim))
end = np.random.uniform(low=model.wv.vectors.min(), high=model.wv.vectors.max(), size=(DEFINES.embedding_dim))
unk = np.random.uniform(low=model.wv.vectors.min(), high=model.wv.vectors.max(), size=(DEFINES.embedding_dim))
return [pad, start, end, unk]
def make_vocab(vocab, pad, start, end, unk):
t2i = {'<PAD>': pad, '<BOS>': start, '<EOS>': end, '<UNK>': unk}
i2t = {pad: '<PAD>', start: '<BOS>', end: '<EOS>', unk: '<UNK>'}
for word, idx in vocab.items():
t2i[word] = idx + 3
i2t[idx + 3] = word
return t2i, i2t
def load_data(file_path):
'''
Load numpy data
Args:
inputs: json data file path, key => title, value => poem contents
Return:
inputs:
labels:
t2i:
i2t:
'''
pad_token = 0 # <PAD>
start_token = 1 # <BOS>
end_token = 2 # <EOS>
unk_token = 3 #<UNK>
data = json.load(open(file_path, 'r', encoding='utf-8'))
data_list = []
all_sentences = []
for poem in data.values():
data_list.append(poem)
all_sentences.extend(poem)
source = []
target = []
for item in data_list:
source.extend(item[:-1])
target.extend(item[1:])
max_len = int(round(np.percentile(np.array([len(x.split(' ')) for x in all_sentences]), 99)))
tokenizer = Tokenizer()
tokenizer.fit_on_texts(all_sentences)
source = tokenizer.texts_to_sequences(source)
target = tokenizer.texts_to_sequences(target)
assert len(source) == len(target)
for i in range(len(source)):
source[i] = np.add(source[i], 3)
target[i] = np.hstack(([start_token], np.add(target[i], 3), [end_token]))
inputs = pad_sequences(source, maxlen=max_len, padding = 'post')
labels = pad_sequences(target, maxlen=max_len+1, padding = 'post')
t2i, i2t = make_vocab(tokenizer.word_index, pad_token, start_token, end_token, unk_token)
return inputs, labels, t2i, i2t, max_len
def mapping_fn(enc_input, dec_input, dec_target):
features = {"encoder_inputs": enc_input, "decoder_inputs": dec_input}
labels = dec_target
return features, labels
def train_input_fn(encoder_inputs, decoder_inputs, decoder_targets):
dataset = tf.data.Dataset.from_tensor_slices((encoder_inputs, decoder_inputs, decoder_targets))
dataset = dataset.shuffle(len(encoder_inputs))
dataset = dataset.batch(DEFINES.batch_size)
dataset = dataset.map(mapping_fn)
dataset = dataset.repeat(DEFINES.epoch)
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
def token2str(token_data, i2t):
output = []
for idx in token_data:
if idx > 2:
output.append(i2t[idx])
return ' '.join(output)
def str2token(str_data, t2i, max_len):
output = []
data = str_data.split()
for token in data:
output.append(t2i[token])
pad = [0]*(max_len-len(output))
return np.array(output+pad)