-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpaddleclas.py
552 lines (500 loc) · 20.9 KB
/
paddleclas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))
from typing import Union, Generator
import argparse
import shutil
import textwrap
import tarfile
import requests
import warnings
from functools import partial
from difflib import SequenceMatcher
import cv2
import numpy as np
from tqdm import tqdm
from prettytable import PrettyTable
from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config
from ppcls.arch.backbone import *
__all__ = ["PaddleClas"]
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
"AlexNet": ["AlexNet"],
"DarkNet": ["DarkNet53"],
"DeiT": [
"DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
"DeiT_base_patch16_224", "DeiT_base_patch16_384",
"DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
"DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
],
"DenseNet": [
"DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
"DenseNet264"
],
"DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
"EfficientNet": [
"EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
"EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
"EfficientNetB6", "EfficientNetB7"
],
"GhostNet":
["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
"HRNet": [
"HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
"HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
"HRNet_W48_C_ssld"
],
"Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
"MobileNetV1": [
"MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
"MobileNetV1", "MobileNetV1_ssld"
],
"MobileNetV2": [
"MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
"MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
"MobileNetV2_ssld"
],
"MobileNetV3": [
"MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
"MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
"MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
"MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
"MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
"MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
],
"RegNet": ["RegNetX_4GF"],
"Res2Net": [
"Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
"Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
"Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
"Res2Net200_vd_26w_4s_ssld"
],
"ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
"ResNet": [
"ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
"ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
"ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
"ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
"ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
],
"ResNeXt": [
"ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
"ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
"ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
"ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
"Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
"ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
"ResNeXt152_vd_64x4d"
],
"SENet": [
"SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
"SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
"SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
],
"ShuffleNetV2": [
"ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
"ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
"ShuffleNetV2_x2_0"
],
"SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
"SwinTransformer": [
"SwinTransformer_large_patch4_window7_224_22kto1k",
"SwinTransformer_large_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window7_224_22kto1k",
"SwinTransformer_base_patch4_window12_384_22kto1k",
"SwinTransformer_base_patch4_window12_384",
"SwinTransformer_base_patch4_window7_224",
"SwinTransformer_small_patch4_window7_224",
"SwinTransformer_tiny_patch4_window7_224"
],
"VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
"VisionTransformer": [
"ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
"ViT_large_patch16_224", "ViT_large_patch16_384",
"ViT_large_patch32_384", "ViT_small_patch16_224"
],
"Xception": [
"Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
"Xception71"
]
}
class ImageTypeError(Exception):
"""ImageTypeError.
"""
def __init__(self, message=""):
super().__init__(message)
class InputModelError(Exception):
"""InputModelError.
"""
def __init__(self, message=""):
super().__init__(message)
def init_config(model_name,
inference_model_dir,
use_gpu=True,
batch_size=1,
topk=5,
**kwargs):
imagenet1k_map_path = os.path.join(
os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt")
cfg = {
"Global": {
"infer_imgs": kwargs["infer_imgs"]
if "infer_imgs" in kwargs else False,
"model_name": model_name,
"inference_model_dir": inference_model_dir,
"batch_size": batch_size,
"use_gpu": use_gpu,
"enable_mkldnn": kwargs["enable_mkldnn"]
if "enable_mkldnn" in kwargs else False,
"cpu_num_threads": kwargs["cpu_num_threads"]
if "cpu_num_threads" in kwargs else 1,
"enable_benchmark": False,
"use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False,
"ir_optim": True,
"use_tensorrt": kwargs["use_tensorrt"]
if "use_tensorrt" in kwargs else False,
"gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000,
"enable_profile": False
},
"PreProcess": {
"transform_ops": [{
"ResizeImage": {
"resize_short": kwargs["resize_short"]
if "resize_short" in kwargs else 256
}
}, {
"CropImage": {
"size": kwargs["crop_size"]
if "crop_size" in kwargs else 224
}
}, {
"NormalizeImage": {
"scale": 0.00392157,
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
"order": ''
}
}, {
"ToCHWImage": None
}]
},
"PostProcess": {
"main_indicator": "Topk",
"Topk": {
"topk": topk,
"class_id_map_file": imagenet1k_map_path
}
}
}
if "save_dir" in kwargs:
if kwargs["save_dir"] is not None:
cfg["PostProcess"]["SavePreLabel"] = {
"save_dir": kwargs["save_dir"]
}
if "class_id_map_file" in kwargs:
if kwargs["class_id_map_file"] is not None:
cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[
"class_id_map_file"]
cfg = config.AttrDict(cfg)
config.create_attr_dict(cfg)
return cfg
def args_cfg():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument(
"--infer_imgs",
type=str,
required=True,
help="The image(s) to be predicted.")
parser.add_argument(
"--model_name", type=str, help="The model name to be used.")
parser.add_argument(
"--inference_model_dir",
type=str,
help="The directory of model files. Valid when model_name not specifed."
)
parser.add_argument(
"--use_gpu", type=str, default=True, help="Whether use GPU.")
parser.add_argument("--gpu_mem", type=int, default=8000, help="")
parser.add_argument(
"--enable_mkldnn",
type=str2bool,
default=False,
help="Whether use MKLDNN. Valid when use_gpu is False")
parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
parser.add_argument(
"--use_tensorrt", type=str2bool, default=False, help="")
parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
parser.add_argument(
"--batch_size", type=int, default=1, help="Batch size. Default by 1.")
parser.add_argument(
"--topk",
type=int,
default=5,
help="Return topk score(s) and corresponding results. Default by 5.")
parser.add_argument(
"--class_id_map_file",
type=str,
help="The path of file that map class_id and label.")
parser.add_argument(
"--save_dir",
type=str,
help="The directory to save prediction results as pre-label.")
parser.add_argument(
"--resize_short",
type=int,
default=256,
help="Resize according to short size.")
parser.add_argument(
"--crop_size", type=int, default=224, help="Centor crop size.")
args = parser.parse_args()
return vars(args)
def print_info():
"""Print list of supported models in formatted.
"""
table = PrettyTable(["Series", "Name"])
try:
sz = os.get_terminal_size()
width = sz.columns - 30 if sz.columns > 50 else 10
except OSError:
width = 100
for series in MODEL_SERIES:
names = textwrap.fill(" ".join(MODEL_SERIES[series]), width=width)
table.add_row([series, names])
width = len(str(table).split("\n")[0])
print("{}".format("-" * width))
print("Models supported by PaddleClas".center(width))
print(table)
print("Powered by PaddlePaddle!".rjust(width))
print("{}".format("-" * width))
def get_model_names():
"""Get the model names list.
"""
model_names = []
for series in MODEL_SERIES:
model_names += (MODEL_SERIES[series])
return model_names
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
"""Find the most similar topk model names.
"""
scores = []
for idx, n in enumerate(names):
if n.startswith("__"):
continue
score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
if score > thresh:
scores.append((idx, score))
scores.sort(key=lambda x: x[1], reverse=True)
similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
return similar_names
def download_with_progressbar(url, save_path):
"""Download from url with progressbar.
"""
if os.path.isfile(save_path):
os.remove(save_path)
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(save_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
save_path):
raise Exception(
f"Something went wrong while downloading file from {url}")
def check_model_file(model_name):
"""Check the model files exist and download and untar when no exist.
"""
storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
model_name)
url = BASE_DOWNLOAD_URL.format(model_name)
tar_file_name_list = [
"inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
]
model_file_path = storage_directory("inference.pdmodel")
params_file_path = storage_directory("inference.pdiparams")
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
tmp_path = storage_directory(url.split("/")[-1])
print(f"download {url} to {tmp_path}")
os.makedirs(storage_directory(), exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, "r") as tarObj:
for member in tarObj.getmembers():
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(storage_directory(filename), "wb") as f:
f.write(file.read())
os.remove(tmp_path)
if not os.path.exists(model_file_path) or not os.path.exists(
params_file_path):
raise Exception(
f"Something went wrong while praparing the model[{model_name}] files!"
)
return storage_directory()
class PaddleClas(object):
"""PaddleClas.
"""
print_info()
def __init__(self,
model_name: str=None,
inference_model_dir: str=None,
use_gpu: bool=True,
batch_size: int=1,
topk: int=5,
**kwargs):
"""Init PaddleClas with config.
Args:
model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
"""
super().__init__()
self._config = init_config(model_name, inference_model_dir, use_gpu,
batch_size, topk, **kwargs)
self._check_input_model()
self.cls_predictor = ClsPredictor(self._config)
def get_config(self):
"""Get the config.
"""
return self._config
def _check_input_model(self):
"""Check input model name or model files.
"""
candidate_model_names = get_model_names()
input_model_name = self._config.Global.get("model_name", None)
inference_model_dir = self._config.Global.get("inference_model_dir",
None)
if input_model_name is not None:
similar_names = similar_architectures(input_model_name,
candidate_model_names)
similar_names_str = ", ".join(similar_names)
if input_model_name not in candidate_model_names:
err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
raise InputModelError(err)
self._config.Global.inference_model_dir = check_model_file(
input_model_name)
return
elif inference_model_dir is not None:
model_file_path = os.path.join(inference_model_dir,
"inference.pdmodel")
params_file_path = os.path.join(inference_model_dir,
"inference.pdiparams")
if not os.path.isfile(model_file_path) or not os.path.isfile(
params_file_path):
err = f"There is no model file or params file in this directory: {inference_model_dir}"
raise InputModelError(err)
return
else:
err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
raise InputModelError(err)
return
def predict(self, input_data: Union[str, np.array],
print_pred: bool=False) -> Generator[list, None, None]:
"""Predict input_data.
Args:
input_data (Union[str, np.array]):
When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
When the type is np.array, it is the image data whose channel order is RGB.
print_pred (bool, optional): Whether print the prediction result. Defaults to False. Defaults to False.
Raises:
ImageTypeError: Illegal input_data.
Yields:
Generator[list, None, None]:
The prediction result(s) of input_data by batch_size. For every one image,
prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
The format is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
"""
if isinstance(input_data, np.ndarray):
outputs = self.cls_predictor.predict(input_data)
yield self.cls_predictor.postprocess(outputs)
elif isinstance(input_data, str):
if input_data.startswith("http") or input_data.startswith("https"):
image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
if not os.path.exists(image_storage_dir()):
os.makedirs(image_storage_dir())
image_save_path = image_storage_dir("tmp.jpg")
download_with_progressbar(input_data, image_save_path)
input_data = image_save_path
warnings.warn(
f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
)
image_list = get_image_list(input_data)
batch_size = self._config.Global.get("batch_size", 1)
topk = self._config.PostProcess.get('topk', 1)
img_list = []
img_path_list = []
cnt = 0
for idx, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
warnings.warn(
f"Image file failed to read and has been skipped. The path: {img_path}"
)
continue
img = img[:, :, ::-1]
img_list.append(img)
img_path_list.append(img_path)
cnt += 1
if cnt % batch_size == 0 or (idx + 1) == len(image_list):
outputs = self.cls_predictor.predict(img_list)
preds = self.cls_predictor.postprocess(outputs,
img_path_list)
if print_pred and preds:
for pred in preds:
filename = pred.pop("file_name")
pred_str = ", ".join(
[f"{k}: {pred[k]}" for k in pred])
print(
f"filename: {filename}, top-{topk}, {pred_str}")
img_list = []
img_path_list = []
yield preds
else:
err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
raise ImageTypeError(err)
return
# for CLI
def main():
"""Function API used for commad line.
"""
cfg = args_cfg()
clas_engine = PaddleClas(**cfg)
res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
for _ in res:
pass
print("Predict complete!")
return
if __name__ == "__main__":
main()