-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathVoronoi.FCMacro
445 lines (350 loc) · 14.4 KB
/
Voronoi.FCMacro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
This macro is inteneded to be used in the Sketcher Workbench.
The idea is to place down some points, which are the center points of the Voronoi cells.
The macro will compute the convex hull of the points, a Voronoi tesselation
and additionally offset all Voronoi cells in such a way, that they can be used
as pockets.
An additional switch exists to draw the convex hull as line segments too, which
can be used to create a extrudeable sketch.
Edit the settings in the main() function for the creation of the Voronoi tesselation
and run the macro inside an active sketch.
"""
__Name__ = 'PDVoronoiFace'
__Comment__ = 'Create Voronoi Pattern on Face'
__Author__ = 'Sebastian Bachmann'
__Version__ = '0.0.1'
__Date__ = '2020-02-28'
__License__ = 'MIT'
__Web__ = 'https://github.com/reox/FreeCAD_Macros'
__Wiki__ = ''
__Icon__ = 'PDVoronoi.svg'
__Help__ = 'Select a face'
__Status__ = 'Beta'
__Requires__ = '>=0.19.18234; py3 only'
__Communication__ = 'https://github.com/reox/FreeCAD_Macros/issues'
"""
Copyright (c) 2019, Sebastian Bachmann <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import Part
import numpy as np
from numpy.linalg import det, norm
from scipy.spatial import Voronoi, Delaunay, ConvexHull
from PySide.QtGui import (
QMainWindow,
QDialog,
QLineEdit,
QPushButton,
QGridLayout,
QLabel,
QGroupBox,
QSpacerItem,
QMessageBox,
)
from PySide import QtCore
def msg(title, message):
diag = QMessageBox(QMessageBox.Warning, title, message)
diag.setWindowModality(QtCore.Qt.ApplicationModal)
diag.exec_()
def sum_conserving_round(inp):
"""
Round a list but conserve the overall sum
by minimizing the roundoff error
"""
frac, res = np.modf(inp)
items = np.argsort(frac)[::-1]
for i in range(int(round(np.sum(inp) - np.sum(res)))):
res[items[i]] += 1.0
return res
def triangle_area(v0, v1, v2):
"""
Returns the surface area of a triangle with given points
:param np.array v0: point 1
:param np.array v1: point 2
:param np.array v2: point 3
"""
return norm(np.cross(v1 - v0, v2 - v0)) * 0.5
def Det(u, v):
"""
Calculate the determinate of two vectors concatenated to matrix
"""
return det(np.vstack((u, v)))
def point_in_triangle(p, v0, v1, v2):
"""
Checks if the point p is part of the triangle formed by v0, v1, v2
v0 is a point and v1 and v2 are vectors from v0 to the other two vertices
From http://mathworld.wolfram.com/TriangleInterior.html
"""
a = (Det(p, v2) - Det(v0, v2)) / Det(v1, v2)
b = -(Det(p, v1) - Det(v0, v1)) / Det(v1, v2)
return a > 0 and b > 0 and (a + b) < 1
def mirror_point_at_point(p, s):
"""
Mirrors the point p at the point s
"""
return p - 2*(p - s)
def fill_triangle(v0, v1, v2, n=100):
"""
Fills a triangle with points.
The points stem from a uniform distribution.
From: http://mathworld.wolfram.com/TrianglePointPicking.html
"""
a1 = np.random.random(n)[:, np.newaxis]
a2 = np.random.random(n)[:, np.newaxis]
# symmetry point at the parallelogram's edge
s = v1 + ((v2 - v1) * 0.5)
# Get vectors from v0 to v1 and v2
v01 = (v1 - v0)
v02 = (v2 - v0)
x = v0 + a1 * v01 + a2 * v02
x = np.array([p if point_in_triangle(p, v0, v01, v02) else mirror_point_at_point(p, s) for p in x])
return x.T
"""
Function by @pv (Pauli Virtanen)
https://gist.github.com/pv/8036995
"""
def voronoi_finite_polygons_2d(vor, radius=None):
"""
Reconstruct infinite voronoi regions in a 2D diagram to finite
regions.
Parameters
----------
vor : Voronoi
Input diagram
radius : float, optional
Distance to 'points at infinity'.
Returns
-------
regions : list of tuples
Indices of vertices in each revised Voronoi regions.
vertices : list of tuples
Coordinates for revised Voronoi vertices. Same as coordinates
of input vertices, with 'points at infinity' appended to the
end.
"""
if vor.points.shape[1] != 2:
raise ValueError("Requires 2D input")
new_regions = []
new_vertices = vor.vertices.tolist()
center = vor.points.mean(axis=0)
if radius is None:
radius = vor.points.ptp().max()*2
# Construct a map containing all ridges for a given point
all_ridges = {}
for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
all_ridges.setdefault(p1, []).append((p2, v1, v2))
all_ridges.setdefault(p2, []).append((p1, v1, v2))
# Reconstruct infinite regions
for p1, region in enumerate(vor.point_region):
vertices = vor.regions[region]
if all(v >= 0 for v in vertices):
# finite region
new_regions.append(vertices)
continue
# reconstruct a non-finite region
ridges = all_ridges[p1]
new_region = [v for v in vertices if v >= 0]
for p2, v1, v2 in ridges:
if v2 < 0:
v1, v2 = v2, v1
if v1 >= 0:
# finite ridge: already in the region
continue
# Compute the missing endpoint of an infinite ridge
t = vor.points[p2] - vor.points[p1] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[[p1, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n
far_point = vor.vertices[v2] + direction * radius
new_region.append(len(new_vertices))
new_vertices.append(far_point.tolist())
# sort region counterclockwise
vs = np.asarray([new_vertices[v] for v in new_region])
c = vs.mean(axis=0)
angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
new_region = np.array(new_region)[np.argsort(angles)]
# finish
new_regions.append(new_region.tolist())
return new_regions, np.asarray(new_vertices)
def fill_voronoi_offset(sketch, points, origin_face, offset):
"""
Create Voronoi cells from a list of points given by XY coordinates
Z will always be set to zero.
These are sketch coordinates!
.. todo::
The method seems to miss out some points, which means that the surface might not completely
filled with voronoi regions.
:param Sketcher.SketchObject sketch: The sketch object to place the cells into
:param List[Tuple[float]] points: A list of 2D points to form the centers of the cells
:param Part.Face origin_face: Originating face in sketch coordinates
:param float offset: the offset in Units to offset all lines. Positive offsets make the cells smaller
"""
vor = Voronoi(points)
regions, vertices = voronoi_finite_polygons_2d(vor)
# Debug: show all points
#for p in points:
# sketch.addGeometry(Part.Point(App.Vector(*p, 0)))
for r in regions:
# Simply remove points which are outside of the face...
#while -1 in r:
# r.remove(-1)
if r == []:
continue
# Make a wire and calculate the offset
wire = Part.makePolygon([App.Vector(*vertices[x], 0) for x in r]+ [App.Vector(*vertices[r[0]], 0)])
face = Part.makeFace(wire, 'Part::FaceMakerSimple')
section = face.common(origin_face)
# If the face has holes, there might be a different number of wires
# than one...
for new_wire in section.Wires:
try:
newshape = new_wire.makeOffset2D(-offset, openResult=False, intersection=True)
except:
print("Shape was probly too small... ignoring")
else:
for e in newshape.Edges:
a, b = e.Vertexes
sketch.addGeometry(Part.LineSegment(a.Point, b.Point))
class VoronoiForm(QDialog):
def __init__(self, parent=None):
super().__init__(parent)
self.setWindowTitle('Voronoi Pattern on Face')
layout = QGridLayout()
layout.addWidget(QLabel('Points:', self), 0, 0)
layout.addWidget(QLabel('Offset:', self), 1, 0)
layout.addWidget(QLabel('Tessellation Tol:', self), 2, 0)
layout.addWidget(QLabel('Seed:', self), 3, 0)
newseed = QPushButton("Random")
newseed.clicked.connect(self.setnewseed)
layout.addWidget(newseed, 3, 2)
self.points = QLineEdit('100')
self.offset = QLineEdit('0.3')
self.tol = QLineEdit('0.1')
self.seed = QLineEdit('1337')
layout.addWidget(self.points, 0, 1)
layout.addWidget(self.offset, 1, 1)
layout.addWidget(self.tol, 2, 1)
layout.addWidget(self.seed, 3, 1)
ok = QPushButton("OK")
ok.clicked.connect(self.do)
abort = QPushButton("Abort")
abort.clicked.connect(self.exit)
layout.addWidget(ok, 4, 0)
layout.addWidget(abort, 4, 1)
self.setLayout(layout)
self.show()
def setnewseed(self):
self.seed.setText(str(np.random.randint(0, np.iinfo(np.int32).max)))
@staticmethod
def get_field_as(field, fun):
err = False
n = None
try:
n = fun(field.text())
except ValueError:
msg('Error', 'Invalid Value "{}", must be of type {}!'.format(field.text(), fun))
err = True
return n, err
def do(self):
err = False
n, e1 = self.get_field_as(self.points, int)
err |= e1
offset, e1 = self.get_field_as(self.offset, float)
err |= e1
tol, e1 = self.get_field_as(self.tol, float)
err |= e1
seed, e1 = self.get_field_as(self.seed, int)
if not err:
np.random.seed(seed)
voronoi_on_face(n, offset, tol)
self.close()
def exit(self, event):
self.close()
def voronoi_on_face(n, offset, tol):
"""
Create a Voronoi Pattern on a Face by creating random points.
A sketch is created which contains the Voronoi cell geometry.
The face is tessellated first, then the triangles are filled with random points
choosen from an uniform distribution.
Afterwards, each Voronoi Cell is offsetted in such a way, that ridges form between
the cells. The width of each ridge is offset/2.
Note, that the tessellation of the face might produce unwanted artefacts!
Voronoi cells might intersect with features (holes) of the face.
This can be explained by the tessellation: Consider a perfect circle, which is then
tessellated. Now a finite number of triangles will be used, and the form
of the circle will be approximated with a n-gon.
During the calculation these n-gons are used! As the edges of the n-gon
are always inside the circle, some Voronoi cells might intersect the circle.
The face will in most cases also not filled completely with cells.
The choise of points influences the end result. Unfortunately, I'm not entirely sure
how to control the cells in such a way that cells are created on all the face.
Right now, there is also no way to control the minimum size of each cell.
One method might be to distribute the points more evenly - which also depends
on the tessellation!
:param int n: Number of points to generate
:param float offset: Offset for voronoi cells, larger than 0
:param float tol: Tessellation tolerance
"""
sel = Gui.Selection.getSelectionEx()
if len(sel) != 1:
msg('Error', 'Please select a single face first!')
return
so = sel[0].SubObjects
if len(so) != 1:
msg('Error', 'Please select a single face first!')
return
face = so[0]
print(face.Wires)
poly_points, simplices = face.tessellate(tol)
# We need lists instead if tuples for numpy to be able to return items from
# an array
simplices = [list(x) for x in simplices]
total_area = face.Area
# Get the object which is selected
feature = Gui.Selection.getSelection()[0]
face_name = sel[0].SubElementNames[0]
body = Gui.ActiveDocument.ActiveView.getActiveObject('pdbody')
if body is None:
msg('Error', 'Need an active body!')
return
sketch = App.ActiveDocument.addObject('Sketcher::SketchObject', 'Voronoi_Sketch')
body.addObject(sketch)
sketch.MapMode = 'FlatFace'
sketch.Support = (feature, face_name)
# We need the placement to calculate the points in the sketch...
# This transform will convert all points on the surface into 2D sketch
# coordinates
transform = sketch.Placement.toMatrix().inverse()
# NOTE: The transformation should always make the point have zero at the z
# coordinate. However, sometimes the z coordinate is <<1 but not 0.
# But we are confident that this should work for all faces ;)
poly = np.array([[p.x, p.y] for p in [transform * p for p in poly_points]])
n_points = sum_conserving_round(np.array([triangle_area(*poly[s]) / total_area * n for s in simplices])).astype(np.uint)
if np.sum(n_points) != n:
msg('Warning', 'Point numbers do not match after distribution step!')
points = np.empty((2, 0))
for i, s in enumerate(simplices):
# If the tesselation produces too small triangles, they might not get
# filled with points
if n_points[i] == 0:
continue
points = np.hstack((points, fill_triangle(*poly[s], n=n_points[i])))
points = points.T
fill_voronoi_offset(sketch, points, face.transformed(transform), offset)
App.ActiveDocument.recompute()
if __name__ == "__main__":
form = VoronoiForm()