forked from Kkevsterrr/geneva
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevolve.py
835 lines (666 loc) · 32.4 KB
/
evolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
"""
Main evolution driver for Geneva (GENetic EVAsion). This file performs the genetic algorithm,
and relies on the evaluator (evaluator.py) to provide fitness evaluations of each individual.
"""
import argparse
import copy
import logging
import operator
import os
import random
import subprocess as sp
import sys
import actions.strategy
import actions.tree
import actions.trigger
import evaluator
import layers.packet
# Grab the terminal size for printing
try:
_, COLUMNS = sp.check_output(['stty', 'size']).decode().split()
# If pytest has capturing enabled or this is run without a tty, catch the exception
except sp.CalledProcessError:
_, COLUMNS = 0, 0
def setup_logger(log_level):
"""
Sets up the logger. This will log at the specified level to "ga.log" and at debug level to "ga_debug.log".
Logs are stored in the trials/ directory under a run-specific folder.
Example: trials/2020-01-01_01:00:00/logs/ga.log
Args:
log_level (str): Log level to use in setting up the logger ("debug")
"""
level = log_level.upper()
assert level in ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], "Unknown log level %s" % level
actions.utils.CONSOLE_LOG_LEVEL = level.lower()
# Setup needed folders
ga_log_dir = actions.utils.setup_dirs(actions.utils.RUN_DIRECTORY)
ga_log = os.path.join(ga_log_dir, "ga.log")
ga_debug_log = os.path.join(ga_log_dir, "ga_debug.log")
# Configure logging globally
formatter = logging.Formatter(fmt='%(asctime)s %(levelname)s:%(message)s', datefmt="%Y-%m-%d %H:%M:%S")
logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', datefmt="%Y-%m-%d %H:%M:%S")
# Set up the root logger
logger = logging.getLogger("ga_%s" % actions.utils.RUN_DIRECTORY)
logger.setLevel(logging.DEBUG)
logger.propagate = False
setattr(logger, "ga_log_dir", ga_log_dir)
# If this logger's handlers have already been set up, don't add them again
if logger.handlers:
return logger
# Set log level of console
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(formatter)
logger.addHandler(console)
# Add a DEBUG file handler to send all the debug output to a file
debug_file_handler = logging.FileHandler(ga_debug_log)
debug_file_handler.setFormatter(formatter)
debug_file_handler.setLevel(logging.DEBUG)
logger.addHandler(debug_file_handler)
# Add a file handler to send all the output to a file
file_handler = logging.FileHandler(ga_log)
file_handler.setFormatter(formatter)
file_handler.setLevel(level)
logger.addHandler(file_handler)
return logger
def collect_plugin_args(cmd, plugin, plugin_type, message=None):
"""
Collects and prints arguments for a given plugin.
Args:
cmd (list): sys.argv or a list of args to parse
plugin (str): Name of plugin to import ("http")
plugin_type (str): Component of plugin to import ("client")
message (str): message to override for printing
"""
if not message:
message = plugin_type
try:
_, cls = actions.utils.import_plugin(plugin, plugin_type)
print("\n\n")
print("=" * int(COLUMNS))
print("Options for --test-type %s %s" % (plugin, message))
cls.get_args(cmd)
# Catch SystemExit here, as this is what argparse raises when --help is passed
except (SystemExit, Exception):
pass
def get_args(cmd):
"""
Sets up argparse and collects arguments.
Args:
cmd (list): sys.argv or a list of args to parse
Returns:
namespace: Parsed arguments
"""
parser = argparse.ArgumentParser(description='Genetic algorithm for evolving censorship evasion.\n\nevolve.py uses a pass-through argument system to pass the command line arguments through different files in the system, including the evaluator (evaluator.py) and a given plugin (plugins/). --help will collect all these arguments.', add_help=False, prog="evolve.py")
parser.add_argument('--test-type', action='store', choices=actions.utils.get_plugins(), default="http", help="plugin to launch")
# Add help message separately so we can collect the help messages of all of the other parsers
parser.add_argument('-h', '--help', action='store_true', default=False, help='print this help message and exit')
# Control aspects of individuals
ind_group = parser.add_argument_group('control aspects of individual strategies')
ind_group.add_argument('--in-trees', action='store', type=int, default=0, help='starting # of input-direction action trees per strategy. Disables inbound forest if set to 0')
ind_group.add_argument('--out-trees', action='store', type=int, default=1, help='starting # of output-direction action trees per strategy')
ind_group.add_argument('--in-actions', action='store', type=int, default=2, help='starting # of input-direction actions per action tree')
ind_group.add_argument('--out-actions', action='store', type=int, default=2, help='starting # of output-direction actions per action tree')
ind_group.add_argument('--fix-trigger', action='store', help='fix all triggers for this evolution to a given trigger')
# Options to control the population pool
pop_group = parser.add_argument_group('control aspects of the population pool')
pop_group.add_argument('--load-from', action='store', help="Load population from a generation file")
pop_group.add_argument('--seed', action='store', help='seed strategy to initialize the population to.')
# Options to evaluate and exit, skip evaluation, and to specify the type of test
evaluation_group = parser.add_argument_group('control aspects of strategy evaluation')
evaluation_group.add_argument('--eval-only', action='store', default=None, help='only evaluate fitness for a given strategy or file of strategies')
evaluation_group.add_argument('--no-eval', action='store_true', help="Disable evaluator for debugging")
evaluation_group.add_argument('--runs', action='store', type=int, default=1, help='number of times each strategy should be run for one evaluation (default 1, fitness is averaged).')
# Hyperparameters for genetic algorithm
genetic_group = parser.add_argument_group('control aspects of the genetic algorithm')
genetic_group.add_argument('--elite-clones', action='store', type=int, default=3, help='number copies of the highest performing individual that should be propagated to the next generation.')
genetic_group.add_argument('--mutation-pb', action='store', type=float, default=0.99, help='mutation probability')
genetic_group.add_argument('--crossover-pb', action='store', type=float, default=0.4, help='crossover probability')
genetic_group.add_argument('--allowed-retries', action='store', type=int, default=20, help='maximum number of times GA will generate any given individual')
genetic_group.add_argument('--generations', type=int, action='store', default=50, help="number of generations to run for.")
genetic_group.add_argument('--population', type=int, action='store', default=250, help="size of population.")
genetic_group.add_argument('--no-reject-empty', action='store_true', default=False, help="disable mutation rejection of empty strategies")
genetic_group.add_argument('--no-canary', action='store_true', help="disable canary phase")
# Limit access to certain protocols, fields, actions, or types of individuals
filter_group = parser.add_argument_group('limit access to certain protocols, fields, actions, or types of individuals')
filter_group.add_argument('--protos', action="store", default="TCP", help="allow the GA to scope only to these protocols")
filter_group.add_argument('--fields', action='store', default="", help='restrict the GA to only seeing given fields')
filter_group.add_argument('--disable-fields', action='store', default="", help='restrict the GA to never using given fields')
filter_group.add_argument('--no-gas', action="store_true", help="disables trigger gas")
filter_group.add_argument('--disable-action', action='store', default="sleep,trace", help='disables specific actions')
# Logging
logging_group = parser.add_argument_group('control logging')
logging_group.add_argument('--log', action='store', default="info", choices=("debug", "info", "warning", "critical", "error"), help="Sets the log level")
logging_group.add_argument('--no-print-hall', action='store_true', help="does not print hall of fame at the end")
logging_group.add_argument('--graph-trees', action='store_true', default=False, help='graph trees in addition to outputting to screen')
# Misc
usage_group = parser.add_argument_group('misc usage')
usage_group.add_argument('--no-lock-file', default=(os.name == "posix"), action='store_true', help="does not use /lock_file.txt")
usage_group.add_argument('--force-cleanup', action='store_true', default=False, help='cleans up all docker containers and networks after evolution')
if not cmd:
parser.error("No arguments specified")
args, _ = parser.parse_known_args(cmd)
epilog = "See the README.md for usage."
# Override the help message to collect the pass through args
if args.help:
parser.print_help()
print(epilog)
print("=" * int(COLUMNS))
print("\nevolve.py uses a pass-through argument system to evaluator.py and other parts of Geneva. These arguments are below.\n\n")
evaluator.get_arg_parser(cmd).print_help()
if args.test_type:
collect_plugin_args(cmd, args.test_type, "plugin", message="parent plugin")
collect_plugin_args(cmd, args.test_type, "client")
collect_plugin_args(cmd, args.test_type, "server")
raise SystemExit
return args
def fitness_function(logger, population, ga_evaluator):
"""
Calls the evaluator to evaluate a given population of strategies.
Sets the .fitness attribute of each individual.
Args:
logger (:obj:`logging.Logger`): A logger to log with
population (list): List of individuals to evaluate
ga_evaluator (:obj:`evaluator.Evaluator`): An evaluator object to evaluate with
Returns:
list: Population post-evaluation
"""
if ga_evaluator:
return ga_evaluator.evaluate(population)
for ind in population:
ind.fitness = 0
logger.info("[%s] Fitness %d: %s", -1, ind.fitness, str(ind))
return population
def sel_random(individuals, k):
"""
Implementation credit to DEAP: https://github.com/DEAP/deap
Select *k* individuals at random from the input *individuals* with
replacement. The list returned contains references to the input
*individuals*.
Args:
individuals (list): A list of individuals to select from.
k (int): The number of individuals to select.
Returns:
list: A list of selected individuals.
"""
return [random.choice(individuals) for _ in range(k)]
def selection_tournament(individuals, k, tournsize, fit_attr="fitness"):
"""
Implementation credit to DEAP: https://github.com/DEAP/deap
Select the best individual among *tournsize* randomly chosen
individuals, *k* times. The list returned contains
references to the input *individuals*.
Args:
individuals (list): A list of individuals to select from.
k (int): The number of individuals to select.
tournsize (int): The number of individuals participating in each tournament.
fit_attr: The attribute of individuals to use as selection criterion (defaults to "fitness")
Returns:
list: A list of selected individuals.
"""
chosen = []
for _ in range(k):
aspirants = sel_random(individuals, tournsize)
chosen.append(copy.deepcopy(max(aspirants, key=operator.attrgetter(fit_attr))))
return chosen
def get_unique_population_size(population):
"""
Computes number of unique individuals in a population.
Args:
population (list): Population list
"""
uniques = {}
for ind in population:
uniques[str(ind)] = True
return len(list(uniques.keys()))
def add_to_hof(hof, population):
"""
Iterates over the current population and updates the hall of fame.
The hall of fame is a dictionary that tracks the fitness of every
run of every strategy ever.
Args:
hof (dict): Current hall of fame
population (list): Population list
Returns:
dict: Updated hall of fame
"""
for ind in population:
if str(ind) not in hof:
hof[str(ind)] = []
hof[str(ind)].append(ind.fitness)
return hof
def generate_strategy(logger, num_in_trees, num_out_trees, num_in_actions, num_out_actions, seed, environment_id=None, disabled=None):
"""
Generates a strategy individual.
Args:
logger (:obj:`logging.Logger`): A logger to log with
num_in_trees (int): Number of trees to initialize in the inbound forest
num_out_trees (int): Number of trees to initialize in the outbound forest
num_in_actions (int): Number of actions to initialize in the each inbound tree
num_out_actions (int): Number of actions to initialize in the each outbound tree
environment_id (str, optional): Environment ID to assign to the new individual
disabled (str, optional): List of actions that should not be considered in building a new strategy
Returns:
:obj:`actions.strategy.Strategy`: A new strategy object
"""
try:
strat = actions.strategy.Strategy([], [], environment_id=environment_id)
strat.initialize(logger, num_in_trees, num_out_trees, num_in_actions, num_out_actions, seed, disabled=disabled)
except Exception:
logger.exception("Failure to generate strategy")
raise
return strat
def mutation_crossover(logger, population, hall, options):
"""
Apply crossover and mutation on the offspring.
Hall is a copy of the hall of fame, used to accept or reject mutations.
Args:
logger (:obj:`logging.Logger`): A logger to log with
population (list): Population of individuals
hall (dict): Current hall of fame
options (dict): Options to override settings. Accepted keys are:
"crossover_pb" (float): probability of crossover
"mutation_pb" (float): probability of mutation
"allowed_retries" (int): number of times a strategy is allowed to exist in the hall of fame.
"no_reject_empty" (bool): whether or not empty strategies should be rejected
Returns:
list: New population after mutation
"""
cxpb = options.get("crossover_pb", 0.5)
mutpb = options.get("mutation_pb", 0.5)
offspring = copy.deepcopy(population)
for i in range(1, len(offspring), 2):
if random.random() < cxpb:
ind = offspring[i - 1]
actions.strategy.mate(ind, offspring[i], indpb=0.5)
offspring[i - 1].fitness, offspring[i].fitness = -1000, -1000
for i in range(len(offspring)):
if random.random() < mutpb:
mutation_accepted = False
while not mutation_accepted:
test_subject = copy.deepcopy(offspring[i])
mutate_individual(logger, test_subject)
# Pull out some metadata about this proposed mutation
fitness_history = hall.get(str(test_subject), [])
# If we've seen this strategy 10 times before and it has always failed,
# or if we have seen it 20 times already, or if it is an empty strategy,
# reject this mutation and get another
if len(fitness_history) >= 10 and all(fitness < 0 for fitness in fitness_history) or \
len(fitness_history) >= options.get("allowed_retries", 20) or \
(len(test_subject) == 0 and not options.get("no_reject_empty")):
mutation_accepted = False
else:
mutation_accepted = True
offspring[i] = test_subject
offspring[i].fitness = -1000
return offspring
def mutate_individual(logger, ind):
"""
Simply calls the mutate function of the given individual.
Args:
logger (:obj:`logging.Logger`): A logger to log with
ind (:obj:`actions.strategy.Strategy`): A strategy individual to mutate
Returns:
:obj:`actions.strategy.Strategy`: Mutated individual
"""
return ind.mutate(logger)
def run_collection_phase(logger, ga_evaluator):
"""Individual mutation works best when it has seen real packets to base
action and trigger values off of, instead of blindly fuzzing packets.
Usually, the 0th generation is useless because it hasn't seen any real
packets yet, and it bases everything off fuzzed data. To combat this, a
canary phase is done instead.
In the canary phase, a single dummy individual is evaluated to capture
packets. Once the packets are captured, they are associated with all of the
initial population pool, so all of the individuals have some packets to base
their data off of.
Since this phase by necessity requires the evaluator, this is only run if
--no-eval is not specified.
Args:
logger (:obj:`logging.Logger`): A logger to log with
ga_evaluator (:obj:`evaluator.Evaluator`): An evaluator object to evaluate with
Returns:
str: ID of the test 'canary' strategy evaluated to do initial collection
"""
canary = generate_strategy(logger, 0, 0, 0, 0, None, disabled=[])
canary_id = ga_evaluator.canary_phase(canary)
if not canary_id:
return []
return canary_id
def write_generation(filename, population):
"""
Writes the population pool for a specific generation.
Args:
filename (str): Name of file to write the generation out to
population (list): List of individuals to write out
"""
# Open File as writable
with open(filename, "w") as fd:
# Write each individual to file
for index, individual in enumerate(population):
if index == len(population) - 1:
fd.write(str(individual))
else:
fd.write(str(individual) + "\n")
def load_generation(logger, filename):
"""
Loads strategies from a file
Args:
logger (:obj:`logger.Logger`): A logger to log with
filename (str): Filename of file containing newline separated strategies
to read generation from
"""
population = []
with open(filename) as file:
# Read each individual from file
for individual in file:
strategy = actions.utils.parse(individual, logger)
population.append(strategy)
return population
def initialize_population(logger, options, canary_id, disabled=None):
"""
Initializes the population from either random strategies or strategies
located in a file.
Args:
logger (:obj:`logging.Logger`): A logger to log with
options (dict): Options to respect in generating initial population.
Options that can be specified as keys:
"load_from" (str, optional): File to load population from
population_size (int): Size of population to initialize
"in-trees" (int): Number of trees to initialize in inbound forest
of each individual
"out-trees" (int): Number of trees to initialize in outbound forest
of each individual
"in-actions" (int): Number of actions to initialize in each
inbound tree of each individual
"out-actions" (int): Number of actions to initialize in each
outbound tree of each individual
"seed" (str): Strategy to seed this pool with
canary_id (str): ID of the canary strategy, used to associate each new
strategy with the packets captured during the canary phase
disabled (list, optional): List of actions that are disabled
Returns:
list: New population of individuals
"""
if options.get("load_from"):
# Load the population from a file
return load_generation(logger, options["load_from"])
# Generate random strategies
population = []
for _ in range(options["population_size"]):
p = generate_strategy(logger, options["in-trees"], options["out-trees"], options["in-actions"],
options["out-actions"], options["seed"], environment_id=canary_id,
disabled=disabled)
population.append(p)
return population
def genetic_solve(logger, options, ga_evaluator):
"""
Run genetic algorithm with given options.
Args:
logger (:obj:`logging.Logger`): A logger to log with
options (dict): Options to respect.
ga_evaluator (:obj:`evaluator.Evaluator`): Evaluator to evaluate
strategies with
Returns:
dict: Hall of fame of individuals
"""
# Directory to save off each generation so evolution can be resumed
ga_generations_dir = os.path.join(actions.utils.RUN_DIRECTORY, "generations")
hall = {}
canary_id = None
if ga_evaluator and not options["no-canary"]:
canary_id = run_collection_phase(logger, ga_evaluator)
else:
logger.info("Skipping initial collection phase.")
population = initialize_population(logger, options, canary_id, disabled=options["disable_action"])
try:
offspring = []
elite_clones = []
if options["seed"]:
elite_clones = [actions.utils.parse(options["seed"], logger)]
# Evolution over given number of generations
for gen in range(options["num_generations"]):
# Debug printing
logger.info("="*(int(COLUMNS) - 25))
logger.info("Generation %d:", gen)
# Save current population pool
filename = os.path.join(ga_generations_dir, "generation" + str(gen) + ".txt")
write_generation(filename, population)
# To store the best individuals of this generation to print
best_fit, best_ind = -10000, None
# Mutation and crossover
offspring = mutation_crossover(logger, population, hall, options)
offspring += elite_clones
# Calculate fitness
offspring = fitness_function(logger, offspring, ga_evaluator)
total_fitness = 0
# Iterate over the offspring to find the best individual for printing
for ind in offspring:
if ind.fitness is None and ga_evaluator:
logger.error("No fitness for individual found: %s.", str(ind))
continue
total_fitness += ind.fitness
if ind.fitness is not None and ind.fitness >= best_fit:
best_fit = ind.fitness
best_ind = ind
# Check if any individuals of this generation belong in the hall of fame
hall = add_to_hof(hall, offspring)
# Save current hall of fame
filename = os.path.join(ga_generations_dir, "hall" + str(gen) + ".txt")
write_hall(filename, hall)
# Status printing for this generation
logger.info("\nGeneration: %d | Unique Inviduals: %d | Avg Fitness: %d | Best Fitness [%s] %s: %s",
gen, get_unique_population_size(population), round(total_fitness / float(len(offspring)), 2),
best_ind.environment_id, str(best_fit), str(best_ind))
# Select next generation
population = selection_tournament(offspring, k=len(offspring) - options["elite_clones"], tournsize=10)
# Add the elite clones
if options["elite_clones"] > 0:
elite_clones = [copy.deepcopy(best_ind) for x in range(options["elite_clones"])]
# If the user interrupted, try to gracefully shutdown
except KeyboardInterrupt:
# Only need to stop the evaluator if one is defined
if ga_evaluator:
ga_evaluator.stop = True
logger.info("")
finally:
if options["force_cleanup"]:
# Try to clean up any hanging docker containers/networks from the run
logger.warning("Cleaning up docker...")
try:
sp.check_call("docker stop $(docker ps -aq) > /dev/null 2>&1", shell=True)
except sp.CalledProcessError:
pass
return hall
def collect_results(hall_of_fame):
"""
Collect final results from offspring.
Args:
hall_of_fame (dict): Hall of fame of individuals
Returns:
str: Formatted printout of the hall of fame
"""
# Sort first on number of runs, then by fitness.
best_inds = sorted(hall_of_fame, key=lambda ind: (len(hall_of_fame[ind]), sum(hall_of_fame[ind])/len(hall_of_fame[ind])))
output = "Results: \n"
for ind in best_inds:
sind = str(ind)
output += "Avg. Fitness %s: %s (Evaluated %d times: %s)\n" % (sum(hall_of_fame[sind])/len(hall_of_fame[sind]), sind, len(hall_of_fame[sind]), hall_of_fame[sind])
return output
def print_results(hall_of_fame, logger):
"""
Prints hall of fame.
Args:
hall_of_fame (dict): Hall of fame to print
logger (:obj:`logging.Logger`): A logger to log results with
"""
logger.info("\n%s", collect_results(hall_of_fame))
def write_hall(filename, hall_of_fame):
"""
Writes hall of fame out to a file.
Args:
filename (str): Filename to write results to
hall_of_fame (dict): Hall of fame of individuals
"""
with open(filename, "w") as fd:
fd.write(collect_results(hall_of_fame))
def eval_only(logger, requested, ga_evaluator, runs=1):
"""
Parses a string representation of a given strategy and runs it
through the evaluator.
Args:
logger (:obj:`logging.Logger`): A logger to log with
requested (str): String representation of requested strategy or filename
of strategies
ga_evaluator (:obj:`evaluator.Evaluator`): An evaluator to evaluate with
runs (int): Number of times each strategy should be evaluated
Returns:
float: Success rate of tested strategies
"""
# The user can specify a file that contains strategies - check first if that is the case
if os.path.isfile(requested):
with open(requested, "r") as fd:
requested_strategies = fd.readlines()
if not requested_strategies:
logger.error("No strategies found in %s", requested)
return None
else:
requested_strategies = [requested]
# We want to override the client's default strategy retry logic to ensure
# we test to the number of runs requested
ga_evaluator.runs = 1
population = []
for requested in requested_strategies:
for i in range(runs):
ind = actions.utils.parse(requested, logger)
population.append(ind)
logging.info("Computing fitness for: %s", str(ind))
logging.info("\n%s", ind.pretty_print())
fits = []
success = 0
# Once the population has been parsed and built, test it
fitness_function(logger, population, ga_evaluator)
for strat in population:
fits.append(strat.fitness)
i = 0
logger.info(fits)
for fitness in fits:
if fitness > 0:
success += 1
logger.info("Trial %d: success! (fitness = %d)", i, fitness)
else:
logger.info("Trial %d: failure! (fitness = %d)", i, fitness)
i += 1
if fits:
logger.info("Overall %d/%d = %d%%", success, i, int((float(success)/float(i)) * 100))
logger.info("Exiting eval-only.")
return float(success)/float(i)
def restrict_headers(logger, protos, filter_fields, disabled_fields):
"""
Restricts which protocols/fields can be accessed by the algorithm.
Args:
logger (:obj:`logging.Logger`): A logger to log with
protos (str): Comma separated string of protocols that are allowed
filter_fields (str): Comma separated string of fields to allow
disabled_fields (str): Comma separated string of fields to disable
"""
# Retrieve flag and protocol filters, and validate them
protos = protos.upper().split(",")
if filter_fields:
filter_fields = filter_fields.lower().split(",")
if disabled_fields:
disabled_fields = disabled_fields.split(",")
layers.packet.Packet.restrict_fields(logger, protos, filter_fields, disabled_fields)
def driver(cmd):
"""
Main workflow driver for the solver. Parses flags and input data, and initiates solving.
Args:
cmd (list): sys.argv or a list of arguments
Returns:
dict: Hall of fame of individuals
"""
# Parse the given arguments
args = get_args(cmd)
logger = setup_logger(args.log)
lock_file_path = "/lock_file.txt"
if not args.no_lock_file and os.path.exists(lock_file_path):
logger.info("Lock file \"%s\" already exists.", lock_file_path)
return None
try:
if not args.no_lock_file:
# Create lock file to prevent interference between multiple runs
open(lock_file_path, "w+")
# Log the command run
logger.debug("Launching strategy evolution: %s", " ".join(cmd))
logger.info("Logging results to %s", logger.ga_log_dir)
if args.no_eval and args.eval_only:
print("ERROR: Cannot --eval-only with --no-eval.")
return None
requested_strategy = args.eval_only
# Define an evaluator for this session
ga_evaluator = None
if not args.no_eval:
cmd += ["--output-directory", actions.utils.RUN_DIRECTORY]
ga_evaluator = evaluator.Evaluator(cmd, logger)
# Check if the user only wanted to evaluate a single given strategy
# If so, evaluate it, and exit
if requested_strategy or requested_strategy == "":
# Disable evaluator empty strategy skipping
ga_evaluator.skip_empty = False
eval_only(logger, requested_strategy, ga_evaluator, runs=args.runs)
return None
restrict_headers(logger, args.protos, args.fields, args.disable_fields)
actions.trigger.GAS_ENABLED = (not args.no_gas)
if args.fix_trigger:
actions.trigger.FIXED_TRIGGER = actions.trigger.Trigger.parse(args.fix_trigger)
requested_seed = args.seed
if requested_seed or requested_seed == "":
try:
requested_seed = actions.utils.parse(args.seed, logger)
except (TypeError, AssertionError, actions.tree.ActionTreeParseError):
logger.error("Failed to parse given strategy: %s", requested_seed)
raise
# Record all of the options supplied by the user to pass to the GA
options = {}
options["no_reject_empty"] = not args.no_reject_empty
options["population_size"] = args.population
options["out-trees"] = args.out_trees
options["in-trees"] = args.in_trees
options["in-actions"] = args.in_actions
options["out-actions"] = args.out_actions
options["force_cleanup"] = args.force_cleanup
options["num_generations"] = args.generations
options["seed"] = args.seed
options["elite_clones"] = args.elite_clones
options["allowed_retries"] = args.allowed_retries
options["mutation_pb"] = args.mutation_pb
options["crossover_pb"] = args.crossover_pb
options["no-canary"] = args.no_canary
options["load_from"] = args.load_from
disable_action = []
if args.disable_action:
disable_action = args.disable_action.split(",")
options["disable_action"] = disable_action
logger.info("Initializing %d strategies with %d input-action trees and %d output-action trees of input size %d and output size %d for evolution over %d generations.",
args.population, args.in_trees, args.out_trees, args.in_actions, args.out_actions, args.generations)
hall_of_fame = {}
try:
# Kick off the main genetic driver
hall_of_fame = genetic_solve(logger, options, ga_evaluator)
except KeyboardInterrupt:
logger.info("User shutdown requested.")
if ga_evaluator:
ga_evaluator.shutdown()
if hall_of_fame and not args.no_print_hall:
# Print the final results
print_results(hall_of_fame, logger)
# Teardown the evaluator if needed
if ga_evaluator:
ga_evaluator.shutdown()
finally:
# Remove lock file
if os.path.exists(lock_file_path):
os.remove(lock_file_path)
return hall_of_fame
if __name__ == "__main__":
driver(sys.argv[1:])