-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
51 lines (36 loc) · 1.44 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import ssl
from notifly import discord
import tensorflow as tf
import os
from dotenv import load_dotenv
load_dotenv()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def test():
ssl._create_default_https_context = ssl._create_unverified_context
token = os.getenv('TOKEN')
notifier = discord.Notifier(token)
class TestCallback(tf.keras.callbacks.Callback):
@notifier.notify_on_epoch_begin(epoch_interval=1, graph_interval=1, hardware_stats_interval=1)
def on_epoch_begin(self, epoch, logs=None):
pass
@notifier.notify_on_epoch_end(epoch_interval=1, graph_interval=1, hardware_stats_interval=1)
def on_epoch_end(self, epoch, logs=None):
pass
@notifier.notify_on_train_begin()
def on_train_begin(self, logs=None):
pass
@notifier.notify_on_train_end()
def on_train_end(self, logs=None):
pass
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (_, _) = fashion_mnist.load_data()
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(2, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=1, callbacks=[TestCallback()])
test()