-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
executable file
·463 lines (377 loc) · 14.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#!/usr/bin/env python
#
# dataset.py
#
# Copyright (c) 2017 Junpei Kawamoto
#
# This file is part of rgmining-script.
#
# rgmining-script is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# rgmining-script is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with rgmining-script. If not, see <http://www.gnu.org/licenses/>.
#
# pylint: disable=wrong-import-position,invalid-name,no-member,import-error
"""Analyze and handle datasets.
"""
from __future__ import absolute_import
import datetime
import logging
from os import path
import sys
from common.writer import JSONWriter, CSVWriter
import dataset_io
import dsargparse
import ria
import numpy as np
import helper
# Input type
def file_or_list(value):
"""Argument type for dsargparse.
If argument is a file, it will be opened and passed as an iterator.
If argument is a string, it will be treated as a comma-separated list.
Args:
value: Argument value.
Yield:
each line in the file if the given value points a file, otherwise,
each item in the given collection.
"""
if path.exists(value):
with open(value) as fp:
for line in fp:
yield line
else:
for item in value.split(","):
yield item
#------------------------------------------------
# Reviewer
#------------------------------------------------
def retrieve_reviewers(graph, output, target):
"""Output the ID of reviewers who review at least one of the given products.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
target: a list of target product ids.
"""
target_ids = {s.strip() for s in target}
for reviewer in graph.reviewers:
for product in graph.retrieve_products(reviewer):
if product.name in target_ids:
output.write(reviewer.name)
output.write("\n")
break
def active_reviewers(graph, output, threshold=2):
"""Output the ID of reviewers who review at least threshold items.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
threshold: the threshold (default: 2).
"""
for reviewer in graph.reviewers:
if len(graph.retrieve_products(reviewer)) >= threshold:
output.write(reviewer.name)
output.write("\n")
def reviewer_size(graph, output, target, csv_format=False):
"""Output the number of reviews of each reviewer who reviews target products.
Compute the number of reviews of each reviewer who reviews at least one
product in the given target products.
The default output format is JSON and the scheme as::
{
"reviewer": <Reviewer ID>,
"size": <The number of reviews the reviewer posts>,
"product": <Product ID which the reviewer reviews in the targets>
}
In the outputs, one line represents one JSON object.
CSV format is also supported to output results.
In this option, the first line shows a header.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
target: a list of target object IDs.
csv_format: If True, outputs will be formatted in CSV format.
"""
if csv_format:
writer = CSVWriter(output, ("reviewer", "size", "product"))
else:
writer = JSONWriter(output)
targets = {name for name in target}
for r in graph.reviewers:
products = graph.retrieve_products(r)
for p in products:
if p.name in targets:
writer.write({
"size": len(products),
"reviewer": r.name,
"product": p.name
})
def filter_reviewers(graph, output, target, csv_format=False):
"""Output reviews posted by reviewers whose IDs match the given set of IDs.
The output format is JSON and the scheme as::
{
"member_id": <Reviewer ID>,
"product_id": <Product ID>,
"rating": <Rating score>,
"date": <Date the review posted>
}
In the outputs, one line represents one JSON object.
CSV format is also supported to output results.
In this option, the first line shows a header.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
target: a list of target reviewer ids.
csv_format: If True, outputs will be formatted in CSV format.
"""
if csv_format:
writer = CSVWriter(output, ("member_id", "product_id", "rating", "date"))
else:
writer = JSONWriter(output)
targets = {name for name in target}
for r in graph.reviewers:
if r.name in targets:
for p in graph.retrieve_products(r):
review = graph.retrieve_review(r, p)
date = review.date
if date:
date = datetime.datetime.strptime(
str(review.date), "%Y%m%d").strftime("%Y-%m-%d")
writer.write({
"member_id": r.name,
"product_id": p.name,
"rating": review.score,
"date": date
})
#------------------------------------------------
# Product
#------------------------------------------------
def rating_average(graph, output, csv_format=False):
"""Output average rating scores of each product.
The output format is JSON and the scheme as::
{
"product_id": <Product ID>,
"summary": <Average rating score>
}
In the outputs, one line represents one JSON object.
CSV format is also supported to output results.
In this option, the first line shows a header.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
csv_format: If True, outputs will be formatted in CSV format.
"""
if csv_format:
writer = CSVWriter(output, ("product_id", "summary"))
else:
writer = JSONWriter(output)
for p in graph.products:
avg = np.mean([
graph.retrieve_review(r, p).score for r in graph.retrieve_reviewers(p)
])
writer.write({
"product_id": p.name,
"summary": avg
})
def distinct_product(graph, output):
"""Output distinct product IDs.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
"""
for p in graph.products:
output.write(p.name)
output.write("\n")
def popular_products(graph, output, threshold=2):
"""Output ID of products of which the number of reviews >= threshold.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
threshold: the threshold (default: 2).
"""
for p in graph.products:
if len(graph.retrieve_reviewers(p)) >= threshold:
output.write(p.name)
output.write("\n")
def filter_product(graph, output, target, csv_format=False):
"""Output reviews posted to products of which IDs match the given set of IDs.
The output format is JSON and the scheme as::
{
"member_id": <Reviewer ID>,
"product_id": <Product ID>,
"rating": <Rating score>,
"date": <Date the review posted>
}
In the outputs, one line represents one JSON object.
CSV format is also supported to output results.
In this option, the first line shows a header.
Args:
graph: Graph instance to which the target dataset is loaded.
output: a writable object.
target: a list of target product IDs.
csv_format: If True, outputs will be formatted in CSV format.
"""
if csv_format:
writer = CSVWriter(output, ("member_id", "product_id", "rating", "date"))
else:
writer = JSONWriter(output)
targets = {name for name in target}
for p in graph.products:
if p.name in targets:
for r in graph.retrieve_reviewers(p):
review = graph.retrieve_review(r, p)
date = review.date
if date:
date = datetime.datetime.strptime(
str(review.date), "%Y%m%d").strftime("%Y-%m-%d")
writer.write({
"member_id": r.name,
"product_id": p.name,
"rating": review.score,
"date": date
})
def review_variance(graph, output, target=None, csv_format=False):
"""Output variances of reviews for each product.
Each line of the output will be formatted as a JSON document,
of which schema is as::
{
"product_id": <Product ID>,
"size": <number of reviews>,
"variance": <variance of reviews>
}
In the outputs, one line represents one JSON object.
CSV format is also supported to output results.
In this option, the first line shows a header.
If target is supplied, only products of which id is in the target will be
outputted.
Args:
data: a readable object containing reviews.
output: a writable object to be outputted results.
target: an iterable of target product ids (default: None).
csv_format: If True, outputs will be formatted in CSV format.
"""
if csv_format:
writer = CSVWriter(output, ("member_id", "product_id", "rating", "date"))
else:
writer = JSONWriter(output)
if target:
target_ids = {s.strip() for s in target}
else:
target_ids = None
for p in graph.products:
if target_ids and p.name not in target_ids:
continue
reviews = [
graph.retrieve_review(r, p).score
for r in graph.retrieve_reviewers(p)
]
if len(reviews) == 0:
continue
writer.write({
"product_id": p.name,
"size": len(reviews),
"variance": np.var(reviews)
})
def _dispatch(cmd, dataset, dataset_param, additional, **kwargs):
"""Dispatch command to be run.
"""
graph = helper.load(ria.one_graph(), dataset, dataset_param)
for item in additional:
with open(item) as fp:
dataset_io.load(graph, fp)
logging.info("Start analyzing.")
cmd(graph=graph, **kwargs)
def main():
"""The main function.
"""
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
parser = dsargparse.ArgumentParser(main=main)
parser.add_argument(
"--output", default=sys.stdout, type=dsargparse.FileType("w"),
help="Output file (default: stdout).")
parser.add_argument(
"dataset", choices=
helper.DATASETS.keys(),
help=(
"choose one dataset to be analyzed.\n"
"If choose `file`, give a file path via dataset-param with file key\n"
"i.e. --dataset-param file=<path>."))
parser.add_argument(
"--dataset-param", action="append", default=[], dest="dataset_param",
help=(
"key and value pair which are connected with '='.\n"
"This option can be set multiply."))
parser.add_argument(
"--additional-dataset", action="append", default=[], dest="additional",
help=(
"add an additional dataset file to be loaded.\n"
"This option can be set multiply."))
subparsers = parser.add_subparsers()
# Reviewer
reviewer_cmd = subparsers.add_parser(
name="reviewer", help="analyze reviewer information").add_subparsers()
retrieve_reviewers_cmd = reviewer_cmd.add_parser(
retrieve_reviewers, name="retrieve")
retrieve_reviewers_cmd.add_argument(
"target", type=dsargparse.FileType("r"),
help="a file containing target product IDs.")
active_reviewer_cmd = reviewer_cmd.add_parser(
active_reviewers, name="active")
active_reviewer_cmd.add_argument("--threshold", type=int, default=2)
size_cmd = reviewer_cmd.add_parser(reviewer_size)
size_cmd.add_argument(
"target", type=dsargparse.FileType("r"))
size_cmd.add_argument(
"--csv", action="store_true", dest="csv_format",
help="Outputs will be formatted in CSV format.")
filter_reviewer_cmd = reviewer_cmd.add_parser(
filter_reviewers, name="filter")
filter_reviewer_cmd.add_argument(
"target", type=dsargparse.FileType("r"),
help="a file containing target reviewer IDs.")
filter_reviewer_cmd.add_argument(
"--csv", action="store_true", dest="csv_format",
help="Outputs will be formatted in CSV format.")
# Product
product_cmd = subparsers.add_parser(
name="product", help="analyze product information").add_subparsers()
rating_average_cmd = product_cmd.add_parser(rating_average, name="average")
rating_average_cmd.add_argument(
"--csv", action="store_true", dest="csv_format",
help="Outputs will be formatted in CSV format.")
product_cmd.add_parser(distinct_product, name="distinct")
popular_products_cmd = product_cmd.add_parser(
popular_products, name="popular")
popular_products_cmd.add_argument("--threshold", type=int, default=2)
filter_product_cmd = product_cmd.add_parser(filter_product, name="filter")
filter_product_cmd.add_argument(
"target", type=dsargparse.FileType("r"),
help="a file containing target product IDs.")
filter_product_cmd.add_argument(
"--csv", action="store_true", dest="csv_format",
help="Outputs will be formatted in CSV format.")
review_variance_cmd = product_cmd.add_parser(
review_variance, name="variance")
review_variance_cmd.add_argument(
"--target", type=dsargparse.FileType("r"),
help="a file consisting of a list of product ids.")
review_variance_cmd.add_argument(
"--csv", action="store_true", dest="csv_format",
help="Outputs will be formatted in CSV format.")
try:
_dispatch(**vars(parser.parse_args()))
except KeyboardInterrupt:
return "Canceled"
except Exception as e: # pylint: disable=broad-except
logging.exception("Untracked exception occurred.")
return e.message
finally:
logging.shutdown()
if __name__ == "__main__":
main()