forked from successar/AttentionExplanation
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathExperimentsBC.py
267 lines (226 loc) · 11.8 KB
/
ExperimentsBC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torchtext
from Transparency.common_code.common import *
from Transparency.Trainers.PlottingBC import generate_graphs, plot_adversarial_examples, plot_logodds_examples
from Transparency.configurations import configurations
from Transparency.Trainers.TrainerBC import Trainer, Evaluator
from Transparency.model.LR import LR
import Transparency.model.Binary_Classification as BC
from torch.utils.data.sampler import SubsetRandomSampler
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
from temperature_scaling import ModelWithTemperature
from model.modelUtils import BatchHolder
import pickle
from common_code.common import pickle_to_file
def train_dataset(dataset, config='lstm') :
try :
config = configurations[config](dataset)
trainer = Trainer(dataset, config=config, _type=dataset.trainer_type)
trainer.train(dataset.train_data, dataset.dev_data, n_iters=8, save_on_metric=dataset.save_on_metric)
evaluator = Evaluator(dataset, trainer.model.dirname, _type=dataset.trainer_type)
_ = evaluator.evaluate(dataset.test_data, save_results=True)
return trainer, evaluator
except :
return
def train_dataset_and_get_lime_explanations(dataset, encoders, num_iters=15):
for e in encoders:
config = configurations[e](dataset)
trainer = Trainer(dataset, config=config,
_type=dataset.trainer_type)
trainer.train(dataset.train_data, dataset.dev_data, n_iters=num_iters,
save_on_metric=dataset.save_on_metric)
evaluator = Evaluator(dataset, trainer.model.dirname,
_type=dataset.trainer_type)
predictions, attentions = evaluator.evaluate(dataset.test_data,
save_results=True)
lime_explanations = trainer.model.get_lime_explanations(
dataset.test_data.X)
return predictions, attentions, lime_explanations
def train_dataset_and_get_atn_map(dataset, encoders, num_iters=15):
for e in encoders:
config = configurations[e](dataset)
trainer = Trainer(dataset, config=config,
_type=dataset.trainer_type)
trainer.train(dataset.train_data, dataset.dev_data, n_iters=num_iters,
save_on_metric=dataset.save_on_metric)
train_losses = trainer.model.train_losses
evaluator = Evaluator(dataset, trainer.model.dirname,
_type=dataset.trainer_type)
predictions, attentions = evaluator.evaluate(dataset.test_data,
save_results=True)
# evaluator = Evaluator(dataset, trainer.model.last_epch_dirname,
# _type=dataset.trainer_type)
predictions_lst_epch, attentions_lst_epch = evaluator.evaluate(dataset.test_data)
return predictions, attentions, predictions_lst_epch, attentions_lst_epch, train_losses
def train_dataset_and_temp_scale(dataset, encoders):
for e in encoders:
config = configurations[e](dataset)
trainer = Trainer(dataset, config=config,
_type=dataset.trainer_type)
trainer.train(dataset.train_data, dataset.dev_data, n_iters=8,
save_on_metric=dataset.save_on_metric)
evaluator = Evaluator(dataset, trainer.model.dirname,
_type=dataset.trainer_type)
print("Temperature-scaling..")
orig_model = evaluator.model
dev_x_tensor = BatchHolder(dataset.dev_data.X).seq
dev_x_tensor_lengths = BatchHolder(dataset.dev_data.X).lengths
dev_x_tensor_masks = BatchHolder(dataset.dev_data.X).masks
valid_dataset = TensorDataset(dev_x_tensor, dev_x_tensor_lengths,
dev_x_tensor_masks, torch.from_numpy(
np.array(dataset.dev_data.y)))
valid_loader = DataLoader(valid_dataset, batch_size=1)
scaled_model = ModelWithTemperature(orig_model)
scaled_model.set_temperature(valid_loader)
def train_dataset_on_encoders(dataset, encoders):
for e in encoders :
train_dataset(dataset, e)
run_experiments_on_latest_model(dataset, e)
def generate_graphs_on_encoders(dataset, encoders) :
for e in encoders :
generate_graphs_on_latest_model(dataset, e)
def train_lr_on_dataset(dataset) :
config = {
'vocab' : dataset.vec,
'stop_words' : True,
'type' : dataset.trainer_type,
'exp_name' : dataset.name
}
dataset.train_data.y = np.array(dataset.train_data.y)
dataset.test_data.y = np.array(dataset.test_data.y)
if len(dataset.train_data.y.shape) == 1 :
dataset.train_data.y = dataset.train_data.y[:, None]
dataset.test_data.y = dataset.test_data.y[:, None]
lr = LR(config)
lr.train(dataset.train_data)
lr.evaluate(dataset.test_data, save_results=True)
lr.save_estimator_logodds()
return lr
def run_evaluator_on_latest_model(dataset, config='lstm') :
config = configurations[config](dataset)
latest_model = get_latest_model(os.path.join(config['training']['basepath'], config['training']['exp_dirname']))
evaluator = Evaluator(dataset, latest_model, _type=dataset.trainer_type)
_ = evaluator.evaluate(dataset.test_data, save_results=True)
return evaluator
def run_evaluator_on_specific_model(dataset, model_path, config='lstm'):
config = configurations[config](dataset)
evaluator = Evaluator(dataset, model_path, _type=dataset.trainer_type)
evaluator.model.temperature = config['training']['temperature']
_ = evaluator.evaluate(dataset.test_data, save_results=True)
return evaluator
def adding_params(net1, net2, alpha):
for param1, param2 in zip(net1.parameters(), net2.parameters()):
param1.data *= (1.0 - alpha)
param1.data += param2.data * alpha
def divide_all_params(swa, n):
for param in swa.parameters():
param.data /= n
def eval_swa_model(dataset, top_lvl_models_dir):
dirs = [d for d in os.listdir(top_lvl_models_dir) if
'enc.th' in os.listdir(os.path.join(top_lvl_models_dir, d))]
Model = BC.Model
swa = Model.init_from_config(os.path.join(top_lvl_models_dir, dirs[0]))
swa.dirname = os.path.join(top_lvl_models_dir, dirs[0])
i = 1
for new_model_dir in dirs[1:]:
new_model = BC.Model.init_from_config(
os.path.join(top_lvl_models_dir, new_model_dir))
adding_params(swa.encoder, new_model.encoder, 1.0 / (i+1))
adding_params(swa.decoder, new_model.decoder, 1.0 / (i+1))
i += 1
# divide_all_params(swa.encoder, len(dirs))
# divide_all_params(swa.decoder, len(dirs))
evaluator = Evaluator(dataset, os.path.join(top_lvl_models_dir, dirs[0]),
_type=dataset.trainer_type)
evaluator.model = swa
_ = evaluator.evaluate(dataset.test_data, save_results=True)
return evaluator
def train_dataset_and_get_gradient(dataset, encoders, num_iters=15):
for e in encoders:
config = configurations[e](dataset)
trainer = Trainer(dataset, config=config,
_type=dataset.trainer_type)
trainer.train(dataset.train_data, dataset.dev_data, n_iters=num_iters,
save_on_metric=dataset.save_on_metric)
evaluator = Evaluator(dataset, trainer.model.dirname,
_type=dataset.trainer_type)
predictions, attentions = evaluator.evaluate(dataset.test_data,
save_results=True)
grads = evaluator.gradient_experiment_get_grads(dataset.test_data)
from Trainers.PlottingBC import process_grads
process_grads(grads)
return predictions, attentions, grads
def run_experiments_on_latest_model(dataset, config='lstm', force_run=True) :
try :
evaluator = run_evaluator_on_latest_model(dataset, config)
test_data = dataset.test_data
evaluator.gradient_experiment(test_data, force_run=force_run)
evaluator.permutation_experiment(test_data, force_run=force_run)
evaluator.adversarial_experiment(test_data, force_run=force_run)
# evaluator.remove_and_run_experiment(test_data, force_run=force_run)
except Exception as e:
print(e)
return
def generate_graphs_on_latest_model(dataset, config='lstm') :
config = configurations[config](dataset)
latest_model = get_latest_model(os.path.join(config['training']['basepath'], config['training']['exp_dirname']))
evaluator = Evaluator(dataset, latest_model, _type=dataset.trainer_type)
_ = evaluator.evaluate(dataset.test_data, save_results=False)
generate_graphs(dataset, config['training']['exp_dirname'], evaluator.model, test_data=dataset.test_data)
def generate_adversarial_examples(dataset, config='lstm') :
evaluator = run_evaluator_on_latest_model(dataset, config)
config = configurations[config](dataset)
plot_adversarial_examples(dataset, config['training']['exp_dirname'], evaluator.model, test_data=dataset.test_data)
def generate_logodds_examples(dataset, config='lstm') :
evaluator = run_evaluator_on_latest_model(dataset, config)
config = configurations[config](dataset)
plot_logodds_examples(dataset, config['training']['exp_dirname'], evaluator.model, test_data=dataset.test_data)
def run_logodds_experiment(dataset, config='lstm') :
model = get_latest_model(os.path.join('outputs', dataset.name, 'LR+TFIDF'))
print(model)
logodds = pickle.load(open(os.path.join(model, 'logodds.p'), 'rb'))
evaluator = run_evaluator_on_latest_model(dataset, config)
evaluator.logodds_attention_experiment(dataset.test_data, logodds, save_results=True)
def run_logodds_substitution_experiment(dataset) :
model = get_latest_model(os.path.join('outputs', dataset.name, 'LR+TFIDF'))
print(model)
logodds = pickle.load(open(os.path.join(model, 'logodds.p'), 'rb'))
evaluator = run_evaluator_on_latest_model(dataset)
evaluator.logodds_substitution_experiment(dataset.test_data, logodds, save_results=True)
def get_top_words(dataset, config='lstm') :
evaluator = run_evaluator_on_latest_model(dataset, config)
test_data = dataset.test_data
test_data.top_words_attn = find_top_words_in_all(dataset, test_data.X, test_data.attn_hat)
def get_results(path) :
latest_model = get_latest_model(path)
if latest_model is not None :
evaluations = json.load(open(os.path.join(latest_model, 'evaluate.json'), 'r'))
return evaluations
else :
raise LookupError("No Latest Model ... ")
names = {
'vanilla_lstm':'LSTM',
'lstm':'LSTM + Additive Attention',
'logodds_lstm':'LSTM + Log Odds Attention',
'lr' : 'LR + BoW',
'logodds_lstm_post' : 'LSTM + Additive Attention (Log Odds at Test)'
}
def push_all_models(dataset, keys) :
model_evals = {}
for e in ['vanilla_lstm', 'lstm', 'logodds_lstm'] :
config = configurations[e](dataset)
path = os.path.join(config['training']['basepath'], config['training']['exp_dirname'])
evals = get_results(path)
model_evals[names[e]] = {keys[k]:evals[k] for k in keys}
path = os.path.join('outputs', dataset.name, 'LR+TFIDF')
evals = get_results(path)
model_evals[names['lr']] = {keys[k]:evals[k] for k in keys}
path = os.path.join('outputs', dataset.name, 'lstm+tanh+logodds(posthoc)')
evals = get_results(path)
model_evals[names['logodds_lstm_post']] = {keys[k]:evals[k] for k in keys}
df = pd.DataFrame(model_evals).transpose()
df['Model'] = df.index
df = df.loc[[names[e] for e in ['lr', 'vanilla_lstm', 'lstm', 'logodds_lstm_post', 'logodds_lstm']]]
os.makedirs(os.path.join('graph_outputs', 'evals'), exist_ok=True)
df.to_csv(os.path.join('graph_outputs', 'evals', dataset.name + '+lstm+tanh.csv'), index=False)
return df