-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmEmbed.py
149 lines (116 loc) · 4.84 KB
/
mEmbed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import division
import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
from skimage.transform import resize as imresize
def getlayeridx(model, layerName):
index = None
for idx, layer in enumerate(model.layers):
if layer.name == layerName:
index = idx
break
return index
def getlayerweights(model, layername):
idx = getlayeridx(model, layername)
return model.layers[idx].get_weights()
from tensorflow.keras import layers
from tensorflow.keras.layers import Reshape, MaxPooling2D, Flatten, UpSampling2D
from tensorflow.keras.layers import Concatenate, Activation
from tensorflow.keras.layers import Conv2D, Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Lambda, Multiply, Add
from tensorflow.keras.layers import Softmax
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras import regularizers
reg = regularizers.l2(1e-8)
class Sample(layers.Layer):
def __init__(self, nbatch, dim1, kldivide, priormu=0, priorvar=1, name='layername'):
super(Sample, self).__init__(name=name)
self.nbatch = nbatch
self.dim1 = dim1
self.mu0 = priormu
self.var0 = priorvar
self.kldivide = kldivide
def call(self, x):
mu = x[0]
logvar = x[1]
std = tf.exp(0.5*logvar)
eps = tf.random.truncated_normal((self.nbatch, self.dim1))
mc = tf.add(mu, tf.multiply(eps, std))
term0 = -0.5*self.dim1
term1 = 0.5*tf.reduce_sum(np.log(self.var0) - logvar)
term2 = 0.5*tf.reduce_sum((tf.exp(logvar) + (mu - self.mu0)**2) / self.var0)
sumkl = term1 + term2 + term0
self.add_loss(sumkl / self.kldivide)
return mc
def compute_output_shape(self, input_shape):
return (self.nbatch, self.dim1)
def resizeTrainData(N,h1,w1,raw):
images = np.zeros((N, h1,w1, 3), dtype=np.float32)
for ii in range(N):
img = raw[ii]
r_img = imresize(img, (h1,w1))
images[ii, :] = np.copy(r_img)
return images
def reduceinitialization(m,divisor):
ws = m.get_weights()
wsnew = []
for i in range(len(ws)):
temp = ws[i]/divisor
wsnew.append(temp)
m.set_weights(wsnew)
return m
def reducevarencoded(m,reduce):
idx = getlayeridx(m, 'd2var')
weight = m.layers[idx].get_weights()
m.layers[idx].set_weights([weight[0],weight[1]-reduce])
return m
def getEmbedding(m, img, h1, w1):
resized = resizeTrainData(1,h1,w1,img)
checks = m.predict(resized, batch_size=1)
muq = checks[-2][0]
logvarq = checks[-1][0]
return [muq, logvarq]
def retrieveZ(mulist, logvarlist, muq, varq, threshold):
minkl = 1000*threshold
dim1 = muq.shape[-1]
distancelist = np.zeros((len(mulist),))
for i in range(len(mulist)):
mup = mulist[i]
varp = logvarlist[i]
term0 = -0.5*dim1
term1 = 0.5*np.sum(varp - varq)
term2 = 0.5*np.sum((np.exp(varq) + (muq - mup)**2) / np.exp(varp))
sumkl = term1 + term2 + term0
distancelist[i] = sumkl /1000
if sumkl<minkl:
result = i
minkl = sumkl
if minkl>threshold:
result = -1
return [result, distancelist]
def vaelight2(datas, dims, params):
data = datas
nbatch = params[0]
kldivide = params[1]
reshapesize = params[2]
b1a = Conv2D(dims[0], (3,3), activation='relu',padding='same',kernel_regularizer=reg,bias_regularizer=reg,name='b1a')(data)
p1 = MaxPooling2D((2,2), strides=(2,2), name='p1')(b1a)
b2a = Conv2D(dims[2], (3,3), activation='relu',padding='same',kernel_regularizer=reg,bias_regularizer=reg,name='b2a')(p1)
p2 = MaxPooling2D((2,2), strides=(2,2), name='p2')(b2a)
b3a = Conv2D(dims[4], (3,3), activation='relu',padding='same',kernel_regularizer=reg,bias_regularizer=reg,name='b3a')(p2)
p3 = MaxPooling2D((2,2), strides=(2,2), name='p3')(b3a)
b4a = Conv2D(dims[6], (3,3), activation='relu',padding='same',kernel_regularizer=reg,bias_regularizer=reg,name='b4a')(p3)
flat = Flatten(name='flat')(b4a)
d1 = Dense(dims[8], activation='relu', kernel_regularizer=reg,bias_regularizer=reg,name='d1')(flat)
d2mu = Dense(dims[9], activation=None, kernel_regularizer=reg,bias_regularizer=reg,name='d2mu')(d1)
d2var = Dense(dims[9], activation=None, kernel_regularizer=reg,bias_regularizer=reg,name='d2var')(d1)
sample = Sample(nbatch, dims[9], kldivide, priormu=0, priorvar=1)([d2mu, d2var])
return [sample, d2mu, d2var]
def passweightsVAE2decoder(m1,m2):
lvae = ['b1a','bn1','b2a','bn2','b3a','bn3','d1','bnd1','d2mu','d2var']
for layername in lvae:
temp = getlayerweights(m1, layername)
idx = getlayeridx(m2, layername)
m2.layers[idx].set_weights(temp)
return m2