-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathconvert.py
48 lines (42 loc) · 1.88 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
'''
EfficientSpeech: An On-Device Text to Speech Model
https://ieeexplore.ieee.org/abstract/document/10094639
Rowel Atienza, 2023
Apache 2.0 License
Usage:
python3 convert.py --checkpoint tiny_eng_266k.ckpt --onnx tiny_eng_266k.onnx
'''
import torch
import yaml
from model import EfficientSpeech
from utils.tools import get_args
# main routine
if __name__ == "__main__":
args = get_args()
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader)
model = EfficientSpeech(preprocess_config=preprocess_config)
model = model.load_from_checkpoint(args.checkpoint, map_location=torch.device('cpu'))
model = model.to(args.infer_device)
if args.onnx is not None:
phoneme = torch.randint(low=70, high=146, size=(1,args.onnx_insize)).int().to(args.infer_device)
print("Input shape: ", phoneme.shape)
sample_input = [{"phoneme": phoneme}, False]
print("Converting to ONNX ...", args.onnx)
# https://pytorch.org/docs/stable/onnx.html#torch.onnx.export
# or use model.to_onnx
#model.to_onnx(args.onnx, sample_input, input_names="phoneme") #, export_params=True)
torch.onnx.export(model, sample_input, args.onnx,
opset_version=args.onnx_opset, do_constant_folding=True,
input_names=["inputs"], output_names=["outputs"],
dynamic_axes={
"inputs": {1: "phoneme"},
# ideally, this works but repeat_interleave is fixed
"outputs": {0: "wav", 1: "lengths", 2: "duration"}
})
elif args.jit is not None:
with torch.no_grad():
print("Converting to JIT ...", args.jit)
#model.to_jit()
script = model.to_torchscript()
torch.jit.save(script, args.jit)