-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathik.m
69 lines (52 loc) · 1.67 KB
/
ik.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function Aaux = ik(amp_ra,amp_la,amp_pel,dt,varargin)
global f P A l0 l1 l2 t inputsim
p = inputParser;
defaultType = 'normal';
validType = {'normal','fusion'};
checkType = @(x) any(validatestring(x,validType));
addRequired(p,'amp_ra');
addRequired(p,'amp_la');
addRequired(p,'amp_pel');
addRequired(p,'dt');
addOptional(p,'type',defaultType,checkType);
parse(p,amp_ra,amp_la,amp_pel,dt,varargin{:})
taux = t;
Paux = P;
Aaux = A;
amp = [amp_ra amp_la amp_pel];
for i = 0:1/f:dt
dP = amp/dt*(1 - cos(2*pi*i/dt));
Paux = Paux + dP/f;
for j = 1:3
R(:,:,j) = rot('x',Paux(4,j))*rot('z',Paux(6,j))*rot('y',Paux(5,j));
end
for j = 1:2
Rot = R(:,:,j).'*R(:,:,3);
r = R(:,:,j).'*(Paux(1:3,3)-Paux(1:3,j)) + (-1)^j*Rot*[l0; 0; 0];
theta = zeros(6,1);
theta(1) = atan2(-r(1),r(2));
c_alpha = round((l2^2-l1^2+r(3)^2+r(2)^2+r(1)^2)/2/l2/sqrt(r(3)^2+r(2)^2+r(1)^2),4);
alpha = atan2(sqrt(1-c_alpha^2),c_alpha);
beta = atan2(r(3),sqrt(r(1)^2+r(2)^2));
theta(2) = alpha + beta;
c_theta3 = round((r(1)^2+r(2)^2+r(3)^2-l1^2-l2^2)/2/l1/l2,4);
theta(3) = atan2(-sqrt(1-c_theta3^2),c_theta3);
T1 = rot('z',theta(1));
T2 = rot('x',theta(2));
T3 = rot('x',theta(3));
R13t = (T1*T2*T3).';
R36 = R13t*Rot;
theta(4:6) = XZY(R36);
theta(5) = -theta(5);
Aaux(:,j) = theta;
end
if p.Results.type == 'normal'
inputsim = [inputsim; [taux reshape(Aaux,1,[])]];
end
taux = taux + 1/f;
end
if p.Results.type == 'normal'
t = taux;
P = Paux;
A = Aaux;
end