This repository has been archived by the owner on Jul 3, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathangles_droites.v
615 lines (588 loc) · 19.6 KB
/
angles_droites.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Require Export angles_vecteurs.
Set Implicit Arguments.
Unset Strict Implicit.
Definition double_AV (angl : AV) := plus angl angl.
Lemma double_Chasles :
forall A B C D E F : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
plus (double_AV (cons_AV (vec A B) (vec C D)))
(double_AV (cons_AV (vec C D) (vec E F))) =
double_AV (cons_AV (vec A B) (vec E F)) :>AV.
unfold double_AV in |- *.
intros.
replace
(plus (plus (cons_AV (vec A B) (vec C D)) (cons_AV (vec A B) (vec C D)))
(plus (cons_AV (vec C D) (vec E F)) (cons_AV (vec C D) (vec E F)))) with
(plus (plus (cons_AV (vec A B) (vec C D)) (cons_AV (vec C D) (vec E F)))
(plus (cons_AV (vec A B) (vec C D)) (cons_AV (vec C D) (vec E F)))).
rewrite Chasles; auto.
mesure A B C D.
mesure C D E F.
replace (x + x0 + (x + x0)) with (x + x + (x0 + x0)); auto.
ring.
Qed.
Lemma double_opp :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
double_AV (opp (cons_AV (vec A B) (vec C D))) =
opp (double_AV (cons_AV (vec A B) (vec C D))) :>AV.
unfold double_AV in |- *; intros.
rewrite <- opp_plus_plus_opp; auto.
Qed.
Lemma zero_plus_double :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
plus (image_angle 0) (double_AV (cons_AV (vec A B) (vec C D))) =
double_AV (cons_AV (vec A B) (vec C D)) :>AV.
intros.
replace (image_angle 0) with (double_AV (cons_AV (vec A B) (vec A B))).
rewrite double_Chasles; auto.
unfold double_AV in |- *.
rewrite <- angle_nul; auto.
rewrite <- add_mes_compatible; auto.
replace (0 + 0) with 0; auto.
ring.
Qed.
Lemma angle_alignes :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
alignes A B C -> double_AV (cons_AV (vec A B) (vec A C)) = image_angle 0.
intros A B C H H0 H1; unfold double_AV in |- *.
rewrite angles_representants_unitaires; auto.
elim alignes_representant_unitaire with (A := A) (B := B) (C := C);
[ intros; try clear alignes_representant_unitaire; auto
| intros; auto
| auto
| auto
| auto ].
rewrite H2.
rewrite <- angles_representants_unitaires; auto.
rewrite <- angle_nul; auto.
rewrite <- add_mes_compatible.
replace (0 + 0) with 0; try ring; auto.
elim existence_representant_unitaire with (A := A) (B := B);
[ intros; try clear existence_representant_unitaire | auto ].
rewrite <- H3.
replace (representant_unitaire (vec A C)) with (vec x A).
cut (A <> x); intros.
rewrite <- angle_plat; auto.
rewrite <- add_mes_compatible.
replace (pi + pi) with deuxpi; auto.
rewrite pi_plus_pi; auto.
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := A) (B := B) (C := x);
[ intros; elim H5; intros H22 H23; rewrite H22; try discrR | auto | auto ].
rewrite H2; rewrite <- H3.
Ringvec.
Qed.
Lemma angle_droites_paralleles :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
paralleles (droite C D) (droite A B) ->
double_AV (cons_AV (vec A B) (vec C D)) = image_angle 0.
intros.
elim paralleles_vecteur with (A := C) (B := D) (C := A) (D := B);
[ intros k H3; try clear paralleles_vecteur; auto | auto | auto | auto ].
elim
existence_representant_mult_vecteur with (A := A) (B := A) (C := B) (k := k);
intros E H4; try clear existence_representant_mult_vecteur;
try exact H4.
cut (vec C D = vec A E); intros.
rewrite H2.
cut (alignes A B E); intros.
apply angle_alignes with (3 := H5); auto.
unfold not in |- *; intros; apply H0.
apply conversion_PP with (a := 1) (b := 1); auto with real.
RingPP2 H2.
rewrite H6.
Ringvec.
apply colineaire_alignes with k; auto.
rewrite H4; auto.
Qed.
Lemma alignement_et_angles :
forall A B C D E F : PO,
A <> B :>PO ->
D <> E :>PO ->
A <> C :>PO ->
D <> F :>PO ->
alignes A B C ->
alignes D E F ->
double_AV (cons_AV (vec A B) (vec D E)) =
double_AV (cons_AV (vec A C) (vec D F)) :>AV.
intros; unfold double_AV in |- *.
rewrite angles_representants_unitaires; auto.
rewrite angles_representants_unitaires; auto.
elim existence_representant_unitaire with (A := D) (B := E);
[ intros; try clear existence_representant_unitaire | auto ].
cut (D <> x); intros.
elim existence_representant_unitaire with (A := A) (B := C);
[ intros; try clear existence_representant_unitaire | auto ].
cut (A <> x0); intros.
elim existence_representant_vecteur with (A := A) (B := D) (C := x); intros.
cut (A <> x1); intros.
elim alignes_representant_unitaire with (A := A) (B := B) (C := C);
[ intros; try clear alignes_representant_unitaire; auto
| intros; auto
| auto
| auto
| auto ].
elim alignes_representant_unitaire with (A := D) (B := E) (C := F);
[ intros; try clear alignes_representant_unitaire; auto
| intros; auto
| auto
| auto
| auto ].
rewrite H12; rewrite H11; auto.
rewrite H12; rewrite H11; auto.
replace (mult_PP (-1) (representant_unitaire (vec D E))) with (vec x D).
rewrite <- H7; rewrite <- H5.
replace (cons_AV (vec A x0) (vec x D)) with
(plus (cons_AV (vec A x0) (vec D x)) (cons_AV (vec D x) (vec x D))).
rewrite <- angle_plat; auto.
rewrite <- H9.
mesure A x0 A x1.
replace (x2 + pi + (x2 + pi)) with (x2 + x2 + deuxpi); auto.
rewrite (add_mes_compatible (x2 + x2) deuxpi).
rewrite pi_plus_pi.
rewrite <- add_mes_compatible.
replace (x2 + x2 + 0) with (x2 + x2); auto.
ring.
unfold deuxpi; ring.
rewrite Chasles; auto.
rewrite <- H5.
Ringvec.
elim alignes_representant_unitaire with (A := D) (B := E) (C := F);
[ intros; try clear alignes_representant_unitaire; auto
| intros; auto
| auto
| auto
| auto ].
replace (representant_unitaire (vec A B)) with (vec x0 A).
rewrite <- H7; rewrite <- H12; rewrite <- H5; rewrite <- H9.
replace (cons_AV (vec x0 A) (vec A x1)) with
(plus (cons_AV (vec x0 A) (vec A x0)) (cons_AV (vec A x0) (vec A x1))).
mesure A x0 A x1.
rewrite <- angle_plat; auto.
rewrite <- add_mes_compatible.
rewrite <- add_mes_compatible.
replace (pi + x2 + (pi + x2)) with (x2 + x2 + deuxpi); auto.
rewrite (add_mes_compatible (x2 + x2) deuxpi).
rewrite pi_plus_pi.
rewrite <- add_mes_compatible.
replace (x2 + x2 + 0) with (x2 + x2); auto.
ring.
unfold deuxpi; ring.
rewrite Chasles; auto.
replace (vec x0 A) with (mult_PP (-1) (representant_unitaire (vec A C)));
auto.
rewrite H11.
Ringvec.
rewrite <- H7.
Ringvec.
replace (representant_unitaire (vec A B)) with (vec x0 A).
rewrite H12; auto.
replace (mult_PP (-1) (representant_unitaire (vec D E))) with (vec x1 A).
rewrite <- H7; rewrite <- H5; rewrite <- H9.
replace (cons_AV (vec x0 A) (vec A x1)) with
(plus (cons_AV (vec x0 A) (vec A x0)) (cons_AV (vec A x0) (vec A x1))).
mesure A x0 A x1.
rewrite <- angle_plat; auto.
rewrite <- add_mes_compatible.
replace (cons_AV (vec A x0) (vec x1 A)) with
(plus (cons_AV (vec A x0) (vec A x1)) (cons_AV (vec A x1) (vec x1 A))).
rewrite <- angle_plat; auto.
rewrite <- H13.
repeat rewrite <- add_mes_compatible.
replace (pi + x2 + (pi + x2)) with (x2 + x2 + (pi + pi)); auto.
replace (x2 + x2 + (pi + pi)) with (x2 + pi + (x2 + pi)); auto.
unfold deuxpi; ring.
ring.
rewrite Chasles; auto.
rewrite Chasles; auto.
VReplace (vec x1 A) (mult_PP (-1) (vec A x1)); auto.
rewrite H9; rewrite H5; auto.
VReplace (vec x0 A) (mult_PP (-1) (vec A x0)).
rewrite H7; rewrite H11.
Ringvec.
unfold not in |- *; intros; apply H6.
apply conversion_PP with (a := 1) (b := 1); auto with real.
cut (vec D x = vec A x1); intros.
RingPP2 H11.
rewrite H10.
Ringvec.
rewrite H9; auto.
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := A) (B := C) (C := x0);
[ intros; elim H9; intros H22 H23; rewrite H22; try discrR | auto | auto ].
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := D) (B := E) (C := x);
[ intros; elim H7; intros H22 H23; rewrite H22; try discrR | auto | auto ].
Qed.
Parameter AD : Type.
Parameter cons_AD : DR -> DR -> AD.
Axiom
AV_vers_AD :
forall A B C D E F G I : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
double_AV (cons_AV (vec A B) (vec C D)) =
double_AV (cons_AV (vec E F) (vec G I)) :>AV ->
cons_AD (droite A B) (droite C D) = cons_AD (droite E F) (droite G I)
:>AD.
Lemma egalite_angles_droites :
forall A B C D E F : PO,
A <> B :>PO ->
D <> E :>PO ->
A <> C :>PO ->
D <> F :>PO ->
alignes A B C ->
alignes D E F ->
cons_AD (droite A B) (droite D E) = cons_AD (droite A C) (droite D F) :>AD.
intros.
apply AV_vers_AD; auto.
apply alignement_et_angles; auto.
Qed.
Lemma angles_droites_colinearite :
forall (A B C D E F G I : PO) (k1 k2 : R),
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
vec E F = mult_PP k1 (vec A B) :>PP ->
vec G I = mult_PP k2 (vec C D) :>PP ->
cons_AD (droite A B) (droite C D) = cons_AD (droite E F) (droite G I) :>AD.
intros.
apply AV_vers_AD; auto.
cut (k1 <> 0); intros.
cut (k2 <> 0).
intros H16; try assumption.
elim existence_representant_vecteur with (A := A) (B := E) (C := F).
intros J H6; try assumption.
elim existence_representant_vecteur with (A := C) (B := G) (C := I).
intros K H7; try assumption.
rewrite <- H6 in H3.
rewrite <- H7 in H4.
cut (alignes A B J); intros.
cut (A <> J); intros.
cut (alignes C D K); intros.
cut (C <> K); intros.
rewrite (alignement_et_angles (A:=A) (B:=B) (C:=J) (D:=C) (E:=D) (F:=K));
auto.
rewrite H6; rewrite H7; auto.
apply distinct_produit_vecteur with (3 := H4); auto.
apply colineaire_alignes with (1 := H4); auto.
apply distinct_produit_vecteur with (3 := H3); auto.
apply colineaire_alignes with (1 := H3); auto.
red in |- *; intros; apply H2.
apply conversion_PP with (a := 1) (b := 1); auto; try discrR.
unfold vec in H4.
RingPP2 H4.
rewrite H6.
RingPP.
red in |- *; intros; apply H1.
unfold vec in H3.
apply conversion_PP with (a := 1) (b := 1); auto; try discrR.
RingPP2 H3.
rewrite H5.
RingPP.
Qed.
Lemma angles_et_colinearite :
forall (A B C D E F G I : PO) (k1 k2 : R),
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
vec E F = mult_PP k1 (vec A B) :>PP ->
vec G I = mult_PP k2 (vec C D) :>PP ->
double_AV (cons_AV (vec A B) (vec C D)) =
double_AV (cons_AV (vec E F) (vec G I)) :>AV.
intros A B C D E F G I k1 k2 H H0 H1 H2 H3 H4; try assumption.
cut (k1 <> 0); intros.
cut (k2 <> 0).
intros H16; try assumption.
elim existence_representant_vecteur with (A := A) (B := E) (C := F).
intros J H6; try assumption.
elim existence_representant_vecteur with (A := C) (B := G) (C := I).
intros K H7; try assumption.
rewrite <- H6 in H3.
rewrite <- H7 in H4.
cut (alignes A B J); intros.
cut (A <> J); intros.
cut (alignes C D K); intros.
cut (C <> K); intros.
rewrite (alignement_et_angles (A:=A) (B:=B) (C:=J) (D:=C) (E:=D) (F:=K));
auto.
rewrite H6; rewrite H7; auto.
apply distinct_produit_vecteur with (3 := H4); auto.
apply colineaire_alignes with (1 := H4); auto.
apply distinct_produit_vecteur with (3 := H3); auto.
apply colineaire_alignes with (1 := H3); auto.
red in |- *; intros; apply H2.
apply conversion_PP with (a := 1) (b := 1); auto; try discrR.
unfold vec in H4.
RingPP2 H4.
rewrite H6.
RingPP.
red in |- *; intros; apply H1.
unfold vec in H3.
apply conversion_PP with (a := 1) (b := 1); auto; try discrR.
RingPP2 H3.
rewrite H5.
RingPP.
Qed.
Lemma angles_et_paralleles :
forall A B C D E F G I : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
paralleles (droite E F) (droite A B) ->
paralleles (droite G I) (droite C D) ->
double_AV (cons_AV (vec A B) (vec C D)) =
double_AV (cons_AV (vec E F) (vec G I)) :>AV.
intros A B C D E F G I H H0 H1 H2 H3 H4; try assumption.
elim (paralleles_vecteur (A:=E) (B:=F) (C:=A) (D:=B)); auto.
intros x H5; try assumption.
elim (paralleles_vecteur (A:=G) (B:=I) (C:=C) (D:=D)); auto.
intros x0 H6; try assumption.
apply angles_et_colinearite with (k1 := x) (k2 := x0); auto.
Qed.
Lemma angles_droites_paralleles :
forall A B C D E F G I : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
paralleles (droite E F) (droite A B) ->
paralleles (droite G I) (droite C D) ->
cons_AD (droite A B) (droite C D) = cons_AD (droite E F) (droite G I) :>AD.
intros A B C D E F G I H H0 H1 H2 H3 H4; try assumption.
elim (paralleles_vecteur (A:=E) (B:=F) (C:=A) (D:=B)); auto.
intros x H5; try assumption.
elim (paralleles_vecteur (A:=G) (B:=I) (C:=C) (D:=D)); auto.
intros x0 H6; try assumption.
apply angles_droites_colinearite with (k1 := x) (k2 := x0); auto.
Qed.
Lemma angle_non_paralleles :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
double_AV (cons_AV (vec A B) (vec C D)) <> image_angle 0 :>AV ->
~ paralleles (droite C D) (droite A B).
intros; red in |- *; intros.
apply H1; apply angle_droites_paralleles; auto.
Qed.
Axiom
droites_paralleles_angle :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
double_AV (cons_AV (vec A B) (vec C D)) = image_angle 0 ->
paralleles (droite A B) (droite C D).
Lemma existence_orthogonal :
forall A B : PO,
A <> B :>PO ->
ex (fun C : PO => A <> C :>PO /\ orthogonal (vec A B) (vec A C)).
intros.
elim existence_representant_unitaire with (A := A) (B := B);
[ intros D H0; try clear existence_representant_unitaire; try exact H0
| auto ].
elim
existence_representant_angle
with (A := A) (B := D) (C := A) (x := pisurdeux);
[ intros C H2; elim H2; intros H3 H4; try clear H2; try exact H4 | auto ].
exists C.
split; [ auto with geo | idtac ].
apply pisurdeux_droit.
rewrite angles_representants_unitaires; auto with geo.
replace (representant_unitaire (vec A C)) with (vec A C); auto with geo.
rewrite <- H0; auto.
elim def_representant_unitaire2 with (A := A) (B := B) (C := D); auto; intros.
elim H2; intros; auto with geo.
Qed.
Comments "," "soit_orthogonal" "cree" "un" "vecteur" "AC" "orthogonal" "a"
"AB" "et" "echoue" "si" "A=B".
Ltac soit_orthogonal A B C :=
elim (existence_orthogonal (A:=A) (B:=B));
[ intros C toto; elim toto; clear toto; intros | auto ].
Lemma orthogonal_angles :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
orthogonal (vec A B) (vec C D) ->
double_AV (cons_AV (vec A B) (vec C D)) = image_angle pi.
intros.
elim existence_representant_unitaire with (A := A) (B := B);
[ intros E H2; try clear existence_representant_unitaire; try exact H2
| auto ].
elim
existence_representant_angle
with (A := A) (B := E) (C := A) (x := pisurdeux);
[ intros F H5; elim H5; intros H3 H4; try clear H5; try exact H4 | auto ].
cut (orthogonal (vec A B) (vec A F)); intros.
elim (orthogonal_paralleles (A:=A) (B:=B) (C:=F) (E:=C) (F:=D));
auto with geo; intros.
cut (x <> 0); intros.
rewrite
(angles_et_colinearite (A:=A) (B:=B) (C:=C) (D:=D) (E:=A) (F:=B) (G:=A)
(I:=F) (k1:=1) (k2:=/ x)); auto with geo.
rewrite angles_representants_unitaires; auto with geo.
replace (representant_unitaire (vec A F)) with (vec A F); auto with geo.
rewrite <- H2; auto.
unfold double_AV in |- *; rewrite <- H4.
rewrite <- add_mes_compatible; (unfold pi in |- *; auto with geo).
Ringvec.
rewrite H6.
Fieldvec x.
red in |- *; intros; apply H0.
apply (produit_zero_conf H6); auto.
apply pisurdeux_droit.
rewrite angles_representants_unitaires; auto with geo.
replace (representant_unitaire (vec A F)) with (vec A F); auto with geo.
rewrite <- H2; auto.
apply carre_scalaire_1_distance; auto.
elim def_representant_unitaire2 with (A := A) (B := B) (C := E); auto; intros.
elim H4; auto.
Qed.
Lemma angles_orthogonal :
forall A B C D : PO,
A <> B :>PO ->
C <> D :>PO ->
double_AV (cons_AV (vec A B) (vec C D)) = image_angle pi :>AV ->
orthogonal (vec A B) (vec C D).
intros.
soit_orthogonal A B ipattern:(E).
apply ortho_sym.
apply paralleles_orthogonal with (A := A) (B := E); auto with geo.
apply droites_paralleles_angle; auto.
replace (double_AV (cons_AV (vec A E) (vec C D))) with
(plus (double_AV (cons_AV (vec A E) (vec A B)))
(double_AV (cons_AV (vec A B) (vec C D)))); auto.
cut (double_AV (cons_AV (vec A E) (vec A B)) = image_angle pi); intros.
rewrite H1; rewrite H4; rewrite <- add_mes_compatible; rewrite <- pi_plus_pi;
(unfold deuxpi in |- *; auto).
apply orthogonal_angles; auto with geo.
rewrite double_Chasles; auto with geo.
Qed.
Lemma angles_droites_orthogonales :
forall A B C D E F G I : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
orthogonal (vec A B) (vec E F) ->
orthogonal (vec C D) (vec G I) ->
double_AV (cons_AV (vec E F) (vec G I)) =
double_AV (cons_AV (vec A B) (vec C D)).
unfold double_AV in |- *; intros.
replace (cons_AV (vec A B) (vec C D)) with
(plus (plus (cons_AV (vec A B) (vec E F)) (cons_AV (vec E F) (vec G I)))
(cons_AV (vec G I) (vec C D))).
mesure E F G I.
mesure A B E F.
mesure G I C D.
replace (x0 + x + x1 + (x0 + x + x1)) with (x + x + (x0 + x0) + (x1 + x1)).
symmetry in |- *.
rewrite add_mes_compatible.
rewrite add_mes_compatible.
replace (image_angle (x0 + x0)) with (image_angle pi).
replace (image_angle (x1 + x1)) with (image_angle pi).
repeat rewrite <- add_mes_compatible.
replace (x + x + pi + pi) with (x + x + deuxpi).
rewrite add_mes_compatible; rewrite pi_plus_pi; rewrite <- add_mes_compatible.
replace (x + x + 0) with (x + x); auto.
ring.
unfold deuxpi in |- *; ring.
rewrite add_mes_compatible; rewrite H7.
replace (plus (cons_AV (vec G I) (vec C D)) (cons_AV (vec G I) (vec C D)))
with (double_AV (cons_AV (vec G I) (vec C D))); auto.
rewrite orthogonal_angles; auto with geo.
rewrite add_mes_compatible; rewrite H6.
replace (plus (cons_AV (vec A B) (vec E F)) (cons_AV (vec A B) (vec E F)))
with (double_AV (cons_AV (vec A B) (vec E F))); auto.
rewrite orthogonal_angles; auto with geo.
ring.
rewrite Chasles; auto.
rewrite Chasles; auto.
Qed.
Lemma angles_droites_droites_orthogonales :
forall A B C D E F G I : PO,
A <> B :>PO ->
C <> D :>PO ->
E <> F :>PO ->
G <> I :>PO ->
orthogonal (vec A B) (vec E F) ->
orthogonal (vec C D) (vec G I) ->
cons_AD (droite E F) (droite G I) = cons_AD (droite A B) (droite C D).
intros.
apply AV_vers_AD; auto.
apply angles_droites_orthogonales; auto.
Qed.
Lemma alignes_angle :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
double_AV (cons_AV (vec A B) (vec A C)) = image_angle 0 -> alignes A B C.
intros.
cut (paralleles (droite A B) (droite A C)); intros.
elim (paralleles_vecteur (A:=A) (B:=B) (C:=A) (D:=C)); auto; intros.
lapply (colineaire_alignes (k:=x) (A:=A) (B:=C) (C:=B)); auto with geo.
apply droites_paralleles_angle; auto.
Qed.
Hint Resolve alignes_angle: geo.
Lemma non_alignes_angle :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
~ alignes A B C ->
double_AV (cons_AV (vec A B) (vec A C)) <> image_angle 0 :>AV.
red in |- *; intros.
apply H1.
apply alignes_angle; auto with geo.
Qed.
Lemma angle_non_alignes :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
double_AV (cons_AV (vec A B) (vec A C)) <> image_angle 0 :>AV ->
~ alignes A B C.
intros.
cut (~ paralleles (droite A C) (droite A B)); intros.
red in |- *; intros; apply H2.
apply paralleles_sym; auto.
apply alignes_paralleles; auto.
apply angle_non_paralleles; auto.
Qed.
Lemma alignement_triangle :
forall A B C D E : PO,
A <> D :>PO ->
A <> E :>PO ->
triangle A B C -> alignes A B D -> alignes A C E -> triangle A D E.
intros.
deroule_triangle A B C.
apply angle_non_alignes; auto with geo.
rewrite <- (alignement_et_angles (A:=A) (B:=B) (C:=D) (D:=A) (E:=C) (F:=E));
auto with geo.
Qed.