This repository has been archived by the owner on Jul 3, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreflexion_plane.v
736 lines (714 loc) · 26 KB
/
reflexion_plane.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
Require Export isocele.
Set Implicit Arguments.
Unset Strict Implicit.
Parameter reflexion : PO -> PO -> PO -> PO.
Axiom
reflexion_def :
forall A B M M' H : PO,
A <> B ->
H = projete_orthogonal A B M ->
M' = reflexion A B M -> vec M M' = mult_PP 2 (vec M H).
Axiom
reflexion_def2 :
forall A B M M' H : PO,
A <> B ->
H = projete_orthogonal A B M ->
vec M M' = mult_PP 2 (vec M H) -> M' = reflexion A B M.
Lemma reflexion_axe :
forall A B M : PO, A <> B -> alignes A B M -> M = reflexion A B M.
intros A B M H2 H0; try assumption.
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H3; try clear existence_projete_orthogonal; try exact H3 | auto ].
apply reflexion_def2 with H; auto.
cut (M = H); intros.
rewrite <- H1; Ringvec.
rewrite H3.
apply def_projete_orthogonal; auto.
replace (vec M M) with zero; auto with geo.
Ringvec.
Qed.
Hint Resolve reflexion_axe: geo.
Lemma reflexion_projete_orthogonal_milieu :
forall A B M M' H : PO,
A <> B ->
H = projete_orthogonal A B M -> M' = reflexion A B M -> H = milieu M M'.
intros.
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros H5.
cut (2 <> 0); intros.
apply vecteur_milieu.
rewrite H5; auto.
replace (mult_PP (/ 2) (mult_PP 2 (vec M H))) with
(mult_PP (/ 2 * 2) (vec M H)).
replace (/ 2 * 2) with 1.
Ringvec.
auto with real.
Ringvec.
discrR.
Qed.
Lemma reflexion_image_distinct :
forall A B M M' : PO, ~ alignes A B M -> M' = reflexion A B M -> M <> M'.
intros A B M M' H0 H1; try assumption.
cut (A <> B); intros H2; [ idtac | auto with geo ].
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H3; try clear existence_projete_orthogonal; try exact H3 | auto ].
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros H5.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
cut (M <> H); intros.
apply dist_non_nulle.
unfold not in |- *; intros; apply H6.
apply distance_nulle.
rewrite (milieu_vecteur2 (A:=M) (B:=M') (M:=H)); auto.
Simplscal.
rewrite carre_scalaire_distance; rewrite H7; ring.
unfold not in |- *; intros; apply H0.
rewrite H6.
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros; try exact H7 | auto | auto ].
Qed.
Lemma reflexion_mediatrice :
forall A B M M' : PO,
~ alignes A B M ->
M' = reflexion A B M -> mediatrice M M' A /\ mediatrice M M' B.
intros A B M M' H1 H3; try assumption.
cut (A <> B); intros H0; [ idtac | auto with geo ].
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H2; try clear existence_projete_orthogonal | auto ].
generalize (reflexion_image_distinct (A:=A) (B:=B) (M:=M) (M':=M'));
intros H5.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros.
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros | auto | auto ].
halignes H7 ipattern:(k).
split; [ try assumption | idtac ].
elim (classic (H = A)); intros.
rewrite <- H10.
apply milieu_mediatrice; auto.
apply orthogonale_segment_milieu_mediatrice with H; auto.
apply ortho_sym.
cut (orthogonal (vec A B) (vec M M')); intros.
replace (vec H A) with (mult_PP (- k) (vec A B)).
Simplortho.
replace (vec H A) with (mult_PP (-1) (vec A H)).
rewrite H9.
Ringvec.
Ringvec.
apply ortho_sym.
rewrite H6; auto.
Simplortho.
elim (classic (H = B)); intros.
rewrite <- H10.
apply milieu_mediatrice; auto.
apply orthogonale_segment_milieu_mediatrice with H; auto.
apply ortho_sym.
cut (orthogonal (vec A B) (vec M M')); intros.
replace (vec H B) with
(add_PP (mult_PP (- k) (vec A B)) (mult_PP 1 (vec A B))).
Simplortho.
replace (mult_PP (- k) (vec A B)) with (mult_PP (-1) (mult_PP k (vec A B))).
rewrite <- H9.
Ringvec.
Ringvec.
apply ortho_sym.
rewrite H6; auto.
Simplortho.
Qed.
Lemma reflexion_axe_orthogonal_segment :
forall A B M M' : PO,
~ alignes A B M -> M' = reflexion A B M -> orthogonal (vec M M') (vec A B).
intros.
assert (A <> B); auto with geo.
apply ortho_sym; auto.
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=M) (M':=M')); auto; intros.
apply mediatrice_orthogonale_segment; auto.
apply reflexion_image_distinct with (2 := H0); auto.
Qed.
Lemma projete_orthogonal_image :
forall A B M M' H : PO,
A <> B ->
H = projete_orthogonal A B M ->
M' = reflexion A B M -> H = projete_orthogonal A B M'.
intros.
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros H5.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros | auto | auto ].
apply def_projete_orthogonal; auto.
apply ortho_sym.
replace (vec H M') with (vec M H); auto with geo.
Qed.
Lemma non_axe_image_non_axe :
forall A B M M' : PO,
~ alignes A B M -> M' = reflexion A B M -> ~ alignes A B M'.
intros A B M M' H0 H2; try assumption.
cut (A <> B); intros H1; [ idtac | auto with geo ].
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H3; try clear existence_projete_orthogonal; try exact H3 | auto ].
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros H5.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
elim reflexion_mediatrice with (A := A) (B := B) (M := M) (M' := M');
[ intros H6 H7; try clear reflexion_mediatrice; try exact H7 | auto | auto ].
generalize (mediatrice_orthogonale_segment (A:=M) (B:=M') (M:=A) (N:=B));
intros.
generalize (reflexion_image_distinct (A:=A) (B:=B) (M:=M) (M':=M')); intros.
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros | auto | auto ].
cut (H = projete_orthogonal A B M'); intros.
cut (M' <> H); intros.
unfold not in |- *; intros; apply H13.
rewrite H12.
apply def_projete_orthogonal; auto.
replace (vec M' M') with zero.
apply zero_ortho_tout.
Ringvec.
rewrite H4; auto.
apply milieu_distinct2; auto.
apply projete_orthogonal_image with M; auto.
Qed.
Lemma reflexion_symetrie :
forall A B M M' : PO, A <> B -> M' = reflexion A B M -> M = reflexion A B M'.
intros A B M M' H1 H0; try assumption.
elim (classic (alignes A B M)); intros H20.
rewrite H0.
rewrite <- reflexion_axe.
rewrite <- reflexion_axe; auto.
auto.
rewrite <- reflexion_axe; auto.
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H3; try clear existence_projete_orthogonal; try exact H3 | auto ].
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros H5.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
generalize (projete_orthogonal_image (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
generalize (non_axe_image_non_axe (A:=A) (B:=B) (M:=M) (M':=M')); intros.
apply reflexion_def2 with H; auto with geo.
Qed.
Lemma reflexion_isocele :
forall A B M M' : PO, A <> B -> M' = reflexion A B M -> isocele A M M'.
intros.
elim (classic (alignes A B M)); intros.
replace M' with M; auto.
unfold isocele in |- *; auto.
rewrite H0; rewrite <- reflexion_axe; auto.
apply mediatrice_isocele.
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=M) (M':=M')); auto.
Qed.
Lemma axe_reflexion_droite :
forall A B C M M' : PO,
A <> B ->
A <> C -> alignes A B C -> M' = reflexion A B M -> M' = reflexion C A M.
intros A B C M M' H10 H0 H1 H2; try assumption.
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H4; try clear existence_projete_orthogonal; try exact H3 | auto ].
halignes H1 ipattern:(k).
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros | auto | auto ].
apply reflexion_def2 with H; auto.
apply def_projete_orthogonal.
auto.
halignes H5 ipattern:(k0).
elim (classic (k = 0)); intros.
absurd (A = C); auto.
rewrite H8 in H3.
apply conversion_PP with (a := 1) (b := 1); auto with real.
RingPP2 H3.
Ringvec.
apply colineaire_alignes with (/ k * (k + - k0)).
replace (vec C H) with (add_PP (vec A H) (mult_PP (-1) (vec A C))).
replace (vec C A) with (mult_PP (-1) (vec A C)).
rewrite H7; rewrite H3.
replace (mult_PP (/ k * (k + - k0)) (mult_PP (-1) (mult_PP k (vec A B))))
with (mult_PP (/ k * (k + - k0) * (-1 * k)) (vec A B)).
replace (/ k * (k + - k0) * (-1 * k)) with (/ k * k * (-1 * (k + - k0))).
replace (/ k * k) with 1.
Ringvec.
auto with real.
ring.
Ringvec.
Ringvec.
Ringvec.
replace (vec C A) with
(add_PP (mult_PP 0 (vec A B)) (mult_PP (- k) (vec A B))).
apply ortho_combinaison_lineaire; auto.
replace (vec C A) with (mult_PP (-1) (vec A C)).
rewrite H3.
Ringvec.
Ringvec.
rewrite (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); auto.
Qed.
Theorem axe_reflexion_bissectrice :
forall A B M M' : PO,
~ alignes A B M ->
M' = reflexion A B M ->
cons_AV (vec A M) (vec A B) = cons_AV (vec A B) (vec A M').
intros A B M M' H1 H2; try assumption.
cut (A <> B); intros H0; [ idtac | auto with geo ].
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H4; try clear existence_projete_orthogonal; try exact H3 | auto ].
generalize (non_axe_image_non_axe (A:=A) (B:=B) (M:=M) (M':=M')); intros.
generalize (non_alignes_distincts (A:=A) (B:=B) (C:=M')); intros.
generalize (non_alignes_distincts (A:=A) (B:=B) (C:=M)); intros.
elim def_projete_orthogonal2 with (A := A) (B := B) (C := M) (H := H);
[ intros; try exact H13 | auto | auto ].
elim (classic (A = H)); intros.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
apply milieu_angles_orthogonaux; auto.
apply reflexion_image_distinct with (2 := H2); auto.
rewrite H9; auto.
generalize (reflexion_def (A:=A) (B:=B) (M:=M) (M':=M') (H:=H)); intros.
replace (vec M M') with
(add_PP (mult_PP (-1) (vec H M)) (mult_PP (-1) (vec H M))).
apply ortho_combinaison_lineaire; apply ortho_sym; auto.
rewrite H11; auto.
Ringvec.
cut (cons_AV (vec A M) (vec A H) = cons_AV (vec A H) (vec A M')); intros;
auto.
rewrite angles_representants_unitaires; auto.
rewrite angles_representants_unitaires; auto.
elim existence_representant_unitaire with (A := A) (B := H);
[ intros; try clear existence_representant_unitaire | auto ].
elim existence_representant_unitaire with (A := A) (B := M');
[ intros; try clear existence_representant_unitaire | auto ].
elim existence_representant_unitaire with (A := A) (B := M);
[ intros; try clear existence_representant_unitaire | auto ].
elim alignes_representant_unitaire with (A := A) (B := B) (C := H);
[ intros; try clear alignes_representant_unitaire; auto
| intros; auto
| auto
| auto
| auto ].
rewrite H14.
rewrite <- angles_representants_unitaires; auto.
rewrite <- angles_representants_unitaires; auto.
replace (representant_unitaire (vec A B)) with
(mult_PP (-1) (representant_unitaire (vec A H))).
cut (A <> x); intros.
replace (mult_PP (-1) (representant_unitaire (vec A H))) with (vec x A).
replace (cons_AV (representant_unitaire (vec A M)) (vec x A)) with
(plus (cons_AV (representant_unitaire (vec A M)) (vec A x))
(cons_AV (vec A x) (vec x A))).
replace (cons_AV (vec x A) (representant_unitaire (vec A M'))) with
(plus (cons_AV (vec x A) (vec A x))
(cons_AV (vec A x) (representant_unitaire (vec A M')))).
rewrite <- angle_plat; auto.
rewrite <- angle_plat; auto.
rewrite H11.
rewrite <- angles_representants_unitaires; auto.
rewrite <- angles_representants_unitaires; auto.
rewrite <- H10; auto.
mesure A M A H.
replace (x2 + pi) with (pi + x2); (try ring; auto).
rewrite <- H12.
cut (A <> x0); intros.
rewrite Chasles; auto.
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := A) (B := M') (C := x0);
[ intros; elim H17; intros H22 H23; try clear H17 def_representant_unitaire2;
rewrite H22; try discrR
| auto
| auto ].
rewrite <- H13.
cut (A <> x1); intros.
rewrite Chasles; auto.
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := A) (B := M) (C := x1);
[ intros; elim H17; intros H22 H23; try clear H18 def_representant_unitaire2;
rewrite H22; try discrR
| auto
| auto ].
rewrite <- H11; Ringvec.
apply distance_non_nulle.
elim def_representant_unitaire2 with (A := A) (B := H) (C := x);
[ intros; elim H16; intros H22 H23; try clear H18 def_representant_unitaire2;
rewrite H22; try discrR
| auto
| auto ].
rewrite H14.
elim existence_representant_unitaire with (A := A) (B := B);
[ intros; try clear existence_representant_unitaire | auto ].
rewrite <- H15; Ringvec.
generalize (reflexion_image_distinct (A:=A) (B:=B) (M:=M) (M':=M')); intros.
generalize (reflexion_mediatrice (A:=A) (B:=B) (M:=M) (M':=M')); intros.
elim H11; auto; intros.
generalize
(reflexion_projete_orthogonal_milieu (A:=A) (B:=B) (M:=M) (M':=M') (H:=H));
intros.
apply mediatrice_milieu_angles; auto.
Qed.
Lemma reflexion_isocele2 :
forall A B M M' : PO, A <> B -> M' = reflexion A B M -> isocele B M M'.
intros.
apply reflexion_isocele with A; auto.
apply axe_reflexion_droite with B; auto with geo.
Qed.
Lemma reflexion_inverse_angle :
forall A B M M' : PO,
A <> B ->
M <> A ->
M <> B ->
M' = reflexion A B M ->
cons_AV (vec M' A) (vec M' B) = opp (cons_AV (vec M A) (vec M B)).
intros.
elim (classic (alignes A B M)); intros.
replace M' with M; auto.
cut (double_AV (cons_AV (vec M A) (vec M B)) = image_angle 0); intros.
replace (opp (cons_AV (vec M A) (vec M B))) with
(plus (image_angle 0) (opp (cons_AV (vec M A) (vec M B))));
auto.
rewrite <- H4; unfold double_AV in |- *.
mesure M A M B.
replace (x + x + - x) with x; auto.
ring.
mesure M A M B.
replace (0 + - x) with (- x); auto.
ring.
apply angle_alignes; auto with geo.
rewrite H2; rewrite <- reflexion_axe; auto.
cut (M <> M'); intros.
cut (~ alignes A B M'); intros.
cut (A <> M'); intros.
cut (B <> M'); intros.
replace (cons_AV (vec M A) (vec M B)) with
(plus (cons_AV (vec M A) (vec M M')) (cons_AV (vec M M') (vec M B))).
rewrite opp_plus_plus_opp; auto.
rewrite def_opp; auto.
lapply (reflexion_isocele (A:=A) (B:=B) (M:=M) (M':=M')); auto; intros.
lapply (reflexion_isocele2 (A:=A) (B:=B) (M:=M) (M':=M')); auto; intros.
lapply (isocele_angles_base (A:=A) (B:=M) (C:=M')); auto; intros.
lapply (isocele_angles_base (A:=B) (B:=M) (C:=M')); auto; intros.
rewrite H11; auto.
rewrite H10; auto.
rewrite def_opp; auto.
rewrite Chasles; auto.
rewrite Chasles; auto.
lapply (non_alignes_distincts2 (A:=A) (B:=B) (C:=M')); auto; intros.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=M')); auto; intros.
apply non_axe_image_non_axe with M; auto.
apply reflexion_image_distinct with (2 := H2); auto.
Qed.
Lemma reflexion_isometrie :
forall A B M M' N N' : PO,
A <> B ->
M' = reflexion A B M ->
N' = reflexion A B N -> distance M N = distance M' N'.
intros.
discrimine M N.
rewrite H2 in H0.
rewrite H0; rewrite <- H1.
rewrite distance_refl2; auto.
rewrite distance_refl2; auto.
elim (classic (alignes A B M)); intros.
replace M' with M; auto.
elim (classic (alignes A B N)); intros.
replace N' with N; auto.
rewrite H1; rewrite <- reflexion_axe; auto.
cut (A <> N); intros.
cut (A <> N'); intros.
discrimine M A.
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=N) (M':=N')); auto;
unfold mediatrice in |- *; intros.
lapply (axe_reflexion_droite (A:=A) (B:=B) (C:=M) (M:=N) (M':=N')); auto;
intros.
elim (reflexion_mediatrice (A:=M) (B:=A) (M:=N) (M':=N')); auto with geo;
unfold mediatrice in |- *; intros.
lapply (alignes_non_alignes_trans (A:=A) (B:=B) (C:=N) (D:=M)); auto with geo;
intros.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=N')); auto with geo; intros.
apply non_axe_image_non_axe with N; auto with geo.
apply non_alignes_distincts with B; auto with geo.
rewrite H0; rewrite <- reflexion_axe; auto.
cut (A <> M); intros.
cut (A <> M'); intros.
elim (classic (alignes A B N)); intros.
replace N' with N; auto.
discrimine N A.
rewrite distance_sym; rewrite (distance_sym M' A).
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=M) (M':=M')); auto with geo;
unfold mediatrice in |- *; intros.
lapply (axe_reflexion_droite (A:=A) (B:=B) (C:=N) (M:=M) (M':=M'));
auto with geo; intros.
rewrite distance_sym; rewrite (distance_sym M' N).
elim (reflexion_mediatrice (A:=N) (B:=A) (M:=M) (M':=M')); auto with geo;
unfold mediatrice in |- *; intros.
lapply (alignes_non_alignes_trans (A:=A) (B:=B) (C:=M) (D:=N)); auto with geo;
intros.
rewrite H1; rewrite <- reflexion_axe; auto.
cut (A <> N); intros.
cut (A <> N'); intros.
elim
cas_egalite_triangle_indirect
with (A := A) (B := M) (C := N) (A' := A) (B' := M') (C' := N');
(auto; intros).
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=M) (M':=M')); auto with geo;
unfold mediatrice in |- *; intros.
elim (reflexion_mediatrice (A:=A) (B:=B) (M:=N) (M':=N')); auto with geo;
unfold mediatrice in |- *; intros.
replace (cons_AV (vec A M) (vec A N)) with
(plus (cons_AV (vec A M) (vec A B)) (cons_AV (vec A B) (vec A N))).
rewrite (axe_reflexion_bissectrice (A:=A) (B:=B) (M:=M) (M':=M')); auto.
replace (cons_AV (vec A B) (vec A N)) with (cons_AV (vec A N') (vec A B)).
replace (plus (cons_AV (vec A B) (vec A M')) (cons_AV (vec A N') (vec A B)))
with (plus (cons_AV (vec A N') (vec A B)) (cons_AV (vec A B) (vec A M'))).
rewrite Chasles; auto.
mesure A B A M'.
mesure A N' A B.
replace (x0 + x) with (x + x0); auto.
ring.
apply permute_angles; auto.
rewrite (axe_reflexion_bissectrice (A:=A) (B:=B) (M:=N) (M':=N')); auto.
rewrite Chasles; auto.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=N')); auto; intros.
apply non_axe_image_non_axe with N; auto.
apply non_alignes_distincts with B; auto.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=M')); auto; intros.
apply non_axe_image_non_axe with M; auto.
apply non_alignes_distincts with B; auto.
Qed.
Lemma reflexion_inverse_AMN :
forall A B M M' N N' : PO,
A <> B ->
A <> M ->
A <> N ->
M' = reflexion A B M ->
N' = reflexion A B N ->
cons_AV (vec A M') (vec A N') = opp (cons_AV (vec A M) (vec A N)).
intros.
elim (classic (alignes A B M)); intros.
replace M' with M; auto.
elim (classic (alignes A B N)); intros.
replace N' with N; auto.
lapply (alignes_trans (A:=A) (B:=B) (C:=M) (D:=N)); auto; intros.
cut (double_AV (cons_AV (vec A M) (vec A N)) = image_angle 0); intros.
replace (opp (cons_AV (vec A M) (vec A N))) with
(plus (image_angle 0) (opp (cons_AV (vec A M) (vec A N))));
auto.
rewrite <- H7; unfold double_AV in |- *.
mesure A M A N.
replace (x + x + - x) with x; auto.
ring.
rewrite plus_commutative; auto with geo.
apply angle_alignes; auto.
rewrite H3; rewrite <- reflexion_axe; auto.
cut (A <> N'); intros.
lapply (axe_reflexion_droite (A:=A) (B:=B) (C:=M) (M:=N) (M':=N')); auto;
intros.
rewrite <- (axe_reflexion_bissectrice (A:=A) (B:=M) (M:=N) (M':=N')); auto.
rewrite def_opp; auto.
lapply (alignes_non_alignes_trans (A:=A) (B:=B) (C:=N) (D:=M)); auto; intros.
lapply (axe_reflexion_droite (A:=M) (B:=A) (C:=A) (M:=N) (M':=N'));
auto with geo; intros.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=N')); auto; intros.
apply non_axe_image_non_axe with N; auto.
rewrite H2; rewrite <- reflexion_axe; auto.
cut (A <> M'); intros.
elim (classic (alignes A B N)); intros.
replace N' with N; auto.
lapply (axe_reflexion_droite (A:=A) (B:=B) (C:=N) (M:=M) (M':=M')); auto;
intros.
rewrite (axe_reflexion_bissectrice (A:=A) (B:=N) (M:=M) (M':=M')); auto.
rewrite def_opp; auto.
lapply (alignes_non_alignes_trans (A:=A) (B:=B) (C:=M) (D:=N)); auto; intros.
lapply (axe_reflexion_droite (A:=N) (B:=A) (C:=A) (M:=M) (M':=M'));
auto with geo; intros.
rewrite H3; rewrite <- reflexion_axe; auto.
cut (A <> N'); intros.
replace (cons_AV (vec A M) (vec A N)) with
(plus (cons_AV (vec A M) (vec A B)) (cons_AV (vec A B) (vec A N))).
rewrite (axe_reflexion_bissectrice (A:=A) (B:=B) (M:=M) (M':=M')); auto.
replace (cons_AV (vec A B) (vec A N)) with (cons_AV (vec A N') (vec A B)).
replace (plus (cons_AV (vec A B) (vec A M')) (cons_AV (vec A N') (vec A B)))
with (plus (cons_AV (vec A N') (vec A B)) (cons_AV (vec A B) (vec A M'))).
rewrite Chasles; auto.
rewrite def_opp; auto.
mesure A B A M'.
mesure A N' A B.
replace (x0 + x) with (x + x0); auto.
ring.
apply permute_angles; auto.
rewrite (axe_reflexion_bissectrice (A:=A) (B:=B) (M:=N) (M':=N')); auto.
rewrite Chasles; auto.
lapply (non_alignes_distincts (A:=A) (B:=B) (C:=N')); auto; intros.
apply non_axe_image_non_axe with N; auto.
apply non_alignes_distincts with B; auto.
apply non_axe_image_non_axe with M; auto.
Qed.
Theorem reflexion_anti_deplacement :
forall A B M M' N N' P P' : PO,
A <> B ->
M <> N ->
M <> P ->
N <> P ->
M' = reflexion A B M ->
N' = reflexion A B N ->
P' = reflexion A B P ->
cons_AV (vec M' N') (vec M' P') = opp (cons_AV (vec M N) (vec M P)).
intros.
cut (M' <> N'); intros.
cut (M' <> P'); intros.
discrimine M A.
cut (M' = A); intros.
rewrite H9.
cut (A <> N); intros.
cut (A <> P); intros.
apply reflexion_inverse_AMN with B; auto.
red in |- *; intros; apply H1.
rewrite H8; auto.
red in |- *; intros; apply H0.
rewrite H8; auto.
rewrite H3; rewrite H8; rewrite <- reflexion_axe; auto with geo.
discrimine N A.
cut (N' = A); intros.
rewrite H10.
cut (A <> P); intros.
elim
cas_egalite_triangle_indirect
with (A := A) (B := M) (C := P) (A' := A) (B' := M') (C' := P');
(auto; intros).
elim H13; intros.
rewrite <- H14; rewrite def_opp; auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=M) (N':=M'));
auto with geo.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=P) (N':=P'));
auto with geo.
rewrite (reflexion_inverse_AMN (A:=A) (B:=B) (M:=P) (M':=P') (N:=M) (N':=M'));
auto.
rewrite def_opp; auto.
red in |- *; intros; apply H2.
rewrite H9; auto.
rewrite H4; rewrite H9; rewrite <- reflexion_axe; auto with geo.
discrimine P A.
cut (P' = A); intros.
rewrite H11.
elim
cas_egalite_triangle_indirect
with (A := A) (B := M) (C := N) (A' := A) (B' := M') (C' := N');
(auto; intros).
elim H13; intros.
rewrite H14; rewrite def_opp; auto.
red in |- *; intros; apply H7.
rewrite H16; auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=M) (N':=M'));
auto with geo.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=N) (N':=N'));
auto with geo.
rewrite (reflexion_inverse_AMN (A:=A) (B:=B) (M:=N) (M':=N') (N:=M) (N':=M'));
auto.
rewrite def_opp; auto.
rewrite H5; rewrite H10; rewrite <- reflexion_axe; auto with geo.
cut (A <> M'); intros.
elim
cas_egalite_triangle_indirect
with (A := A) (B := M) (C := N) (A' := A) (B' := M') (C' := N');
(auto; intros).
elim H13; intros.
elim
cas_egalite_triangle_indirect
with (A := A) (B := M) (C := P) (A' := A) (B' := M') (C' := P');
(auto; intros).
elim H17; intros.
replace (cons_AV (vec M N) (vec M P)) with
(plus (cons_AV (vec M N) (vec M A)) (cons_AV (vec M A) (vec M P))).
replace (cons_AV (vec M A) (vec M P)) with (cons_AV (vec M' P') (vec M' A)).
rewrite H14.
replace
(plus (cons_AV (vec M' A) (vec M' N')) (cons_AV (vec M' P') (vec M' A)))
with
(plus (cons_AV (vec M' P') (vec M' A)) (cons_AV (vec M' A) (vec M' N'))).
rewrite Chasles; auto.
rewrite def_opp; auto.
mesure M' P' M' A.
mesure M' A M' N'.
replace (x + x0) with (x0 + x); auto.
ring.
apply permute_angles; auto.
rewrite Chasles; auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=M) (N':=M'));
auto with geo.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=P) (N':=P'));
auto with geo.
rewrite (reflexion_inverse_AMN (A:=A) (B:=B) (M:=P) (M':=P') (N:=M) (N':=M'));
auto.
rewrite def_opp; auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=M) (N':=M'));
auto with geo.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=N) (N':=N'));
auto with geo.
rewrite (reflexion_inverse_AMN (A:=A) (B:=B) (M:=N) (M':=N') (N:=M) (N':=M'));
auto.
rewrite def_opp; auto.
apply (isometrie_distinct (A:=A) (B:=M) (A':=A) (B':=M')); auto with geo.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=A) (M':=A) (N:=M) (N':=M'));
auto with geo.
apply (isometrie_distinct (A:=M) (B:=P) (A':=M') (B':=P')); auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=M) (M':=M') (N:=P) (N':=P'));
auto.
apply (isometrie_distinct (A:=M) (B:=N) (A':=M') (B':=N')); auto.
rewrite (reflexion_isometrie (A:=A) (B:=B) (M:=M) (M':=M') (N:=N) (N':=N'));
auto.
Qed.
Lemma mediatrices_reflexion :
forall A B M M' : PO,
M <> M' ->
~ alignes A B M ->
mediatrice M M' A -> mediatrice M M' B -> M' = reflexion A B M.
intros A B M M' H0 H1 H2 H3; try assumption.
cut (A <> B); intros H; [ idtac | auto with geo ].
soit_milieu M M' ipattern:(K).
apply reflexion_def2 with K; auto with geo.
apply def_projete_orthogonal; auto.
discrimine K A.
apply alignes_ordre_cycle; auto.
apply mediatrice_droite with (2 := H4); auto.
cut (orthogonal (vec M M') (vec A B)); intros.
apply ortho_sym.
replace (vec K M) with (mult_PP (-1) (vec M K)).
rewrite (milieu_vecteur2 (A:=M) (B:=M') (M:=K)); auto.
replace (mult_PP (-1) (mult_PP (/ 2) (vec M M'))) with
(mult_PP (- / 2) (vec M M')).
Simplortho.
cut (2 <> 0); intros; auto with real.
Fieldvec 2.
Ringvec.
apply ortho_sym.
apply mediatrice_orthogonale_segment; auto.
Qed.
Lemma existence_reflexion_AB :
forall A B M : PO, A <> B -> exists M' : PO, M' = reflexion A B M.
intros A B M H1; try assumption.
elim existence_projete_orthogonal with (A := A) (B := B) (C := M);
[ intros H H4; try clear existence_projete_orthogonal; try exact H3 | auto ].
elim existence_representant_vecteur with (A := H) (B := M) (C := H);
intros M' H3; try clear existence_representant_vecteur;
try exact H3.
exists M'.
apply reflexion_def2 with H; auto.
replace (vec M M') with (add_PP (vec M H) (vec H M')).
rewrite H3; Ringvec.
Ringvec.
Qed.