-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsegmenter.py
executable file
·532 lines (449 loc) · 18.9 KB
/
segmenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/usr/bin/env python
# Copyright (C) 2009-2010 Ron J. Weiss ([email protected])
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Music structure segmentation using SI-PLCA
This module contains an implementation of the algorithm for music
structure segmentation described in [1]. It is based on
Shift-invariant Probabilistic Latent Component Analysis, a variant of
convolutive non-negative matrix factorization (NMF). See plca.py for
more details.
Examples
--------
>>> import segmenter
>>> wavfile = '/path/to/come_together.wav'
>>> rank = 4 # rank corresponds to the number of segments
>>> win = 60 # win controls the length of each chroma pattern
>>> niter = 200 # number of iterations to perform
>>> np.random.seed(123) # Make this reproduceable
>>> labels = segmenter.segment_wavfile(wavfile, win=win, rank=rank,
... niter=niter, plotiter=10)
INFO:plca:Iteration 0: divergence = 10.065992
INFO:plca:Iteration 50: divergence = 9.468196
INFO:plca:Iteration 100: divergence = 9.421632
INFO:plca:Iteration 150: divergence = 9.409279
INFO:root:Iteration 199: final divergence = 9.404961
INFO:segmenter:Removing 2 segments shorter than 32 frames
.. image::come_together-segmentation.png
>>> print labels
0.0000 21.7480 segment0
21.7480 37.7640 segment1
37.7640 55.1000 segment0
55.1000 76.1440 segment1
76.1440 95.1640 segment0
95.1640 121.2360 segment1
121.2360 158.5360 segment2
158.5360 180.8520 segment1
180.8520 196.5840 segment0
196.5840 255.8160 segment3
See Also
--------
segmenter.extract_features : Beat-synchronous chroma feature extraction
segmenter.segment_song : Performs segmentation
segmenter.evaluate_segmentation : Evaluate frame-wise segmentation
segmenter.convert_labels_to_segments : Generate HTK formatted list of segments
from frame-wise labels
plca.SIPLCA : Implementation of Shift-invariant PLCA
References
----------
[1] R. J. Weiss and J. P. Bello. "Identifying Repeated Patterns in
Music Using Sparse Convolutive Non-Negative Matrix
Factorization". In Proc. International Conference on Music
Information Retrieval (ISMIR), 2010.
Copyright (C) 2009-2010 Ron J. Weiss <[email protected]>
LICENSE: This module is licensed under the GNU GPL. See COPYING for details.
"""
import glob
import logging
import optparse
import os
import sys
import numpy as np
import scipy as sp
import scipy.io
import plca
logging.basicConfig(level=logging.INFO,
format='%(levelname)s %(name)s %(asctime)s '
'%(filename)s:%(lineno)d %(message)s')
logger = logging.getLogger('segmenter')
try:
from mlabwrap import mlab
mlab.addpath('coversongs')
except:
logger.warning('Unable to import mlab module. Feature extraction '
'and evaluation will not work.')
def extract_features(wavfilename, fctr=400, fsd=1.0, type=1):
"""Computes beat-synchronous chroma features from the given wave file
Calls Dan Ellis' chrombeatftrs Matlab function.
"""
logger.info('Extracting beat-synchronous chroma features from %s',
wavfilename)
x,fs = mlab.wavread(wavfilename, nout=2)
feats,beats = mlab.chrombeatftrs(x.mean(1)[:,np.newaxis], fs, fctr, fsd,
type, nout=2)
songlen = x.shape[0] / fs
return feats, beats.flatten(), songlen
def segment_song(seq, rank=4, win=32, seed=None,
nrep=1, minsegments=3, maxlowen=10, maxretries=5,
uninformativeWinit=False, uninformativeHinit=True,
normalize_frames=True, viterbi_segmenter=False,
align_downbeats=False, **kwargs):
"""Segment the given feature sequence using SI-PLCA
Parameters
----------
seq : array, shape (F, T)
Feature sequence to segment.
rank : int
Number of patterns (unique segments) to search for.
win : int
Length of patterns in frames.
seed : int
Random number generator seed. Defaults to None.
nrep : int
Number of times to repeat the analysis. The repetition with
the lowest reconstrucion error is returned. Defaults to 1.
minsegments : int
Minimum number of segments in the output. The analysis is
repeated until the output contains at least `minsegments`
segments is or `maxretries` is reached. Defaults to 3.
maxlowen : int
Maximum number of low energy frames in the SIPLCA
reconstruction. The analysis is repeated if it contains too
many gaps. Defaults to 10.
maxretries : int
Maximum number of retries to perform if `minsegments` or
`maxlowen` are not satisfied. Defaults to 5.
uninformativeWinit : boolean
If True, `W` is initialized to have a flat distribution.
Defaults to False.
uninformativeHinit : boolean
If True, `H` is initialized to have a flat distribution.
Defaults to True.
normalize_frames : boolean
If True, normalizes each frame of `seq` so that the maximum
value is 1. Defaults to True.
viterbi_segmenter : boolean
If True uses uses the Viterbi algorithm to convert SIPLCA
decomposition into segmentation, otherwises uses the process
described in [1]. Defaults to False.
align_downbeats : boolean
If True, postprocess the SIPLCA analysis to find the optimal
alignments of the components of W with V. I.e. try to align
the first column of W to the downbeats in the song. Defaults
to False.
kwargs : dict
Keyword arguments passed to plca.SIPLCA.analyze. See
plca.SIPLCA for more details.
Returns
-------
labels : array, length `T`
Segment label for each frame of `seq`.
W : array, shape (`F`, `rank`, `win`)
Set of `F` x `win` shift-invariant basis functions found in `seq`.
Z : array, length `rank`
Set of mixing weights for each basis.
H : array, shape (`rank`, `T`)
Activations of each basis in time.
segfun : array, shape (`rank`, `T`)
Raw segmentation function used to generate segment labels from
SI-PLCA decomposition. Corresponds to $\ell_k(t)$ in [1].
norm : float
Normalization constant to make `seq` sum to 1.
Notes
-----
The experimental results reported in [1] were found using the
default values for all keyword arguments while varying kwargs.
"""
seq = seq.copy()
if normalize_frames:
seq /= seq.max(0) + np.finfo(float).eps
logger.info('Using random seed %s.', seed)
np.random.seed(seed)
if 'alphaWcutoff' in kwargs and 'alphaWslope' in kwargs:
kwargs['alphaW'] = create_sparse_W_prior((seq.shape[0], win),
kwargs['alphaWcutoff'],
kwargs['alphaWslope'])
del kwargs['alphaWcutoff']
del kwargs['alphaWslope']
F, T = seq.shape
if uninformativeWinit:
kwargs['initW'] = np.ones((F, rank, win)) / (F*win)
if uninformativeHinit:
kwargs['initH'] = np.ones((rank, T)) / T
outputs = []
for n in xrange(nrep):
outputs.append(plca.SIPLCA.analyze(seq, rank=rank, win=win, **kwargs))
div = [x[-1] for x in outputs]
W, Z, H, norm, recon, div = outputs[np.argmin(div)]
# Need to rerun segmentation if there are too few segments or
# if there are too many gaps in recon (i.e. H)
lowen = seq.shape[0] * np.finfo(float).eps
nlowen_seq = np.sum(seq.sum(0) <= lowen)
if nlowen_seq > maxlowen:
maxlowen = nlowen_seq
nlowen_recon = np.sum(recon.sum(0) <= lowen)
nretries = maxretries
while (len(Z) < minsegments or nlowen_recon > maxlowen) and nretries > 0:
nretries -= 1
logger.info('Redoing SIPLCA analysis (len(Z) = %d, number of '
'low energy frames = %d).', len(Z), nlowen_recon)
outputs = []
for n in xrange(nrep):
outputs.append(plca.SIPLCA.analyze(seq, rank=rank, win=win,
**kwargs))
div = [x[-1] for x in outputs]
W, Z, H, norm, recon, div = outputs[np.argmin(div)]
nlowen_recon = np.sum(recon.sum(0) <= lowen)
if align_downbeats:
alignedW = plca.normalize(find_downbeat(seq, W)
+ 0.1 * np.finfo(float).eps, 1)
rank = len(Z)
if uninformativeHinit:
kwargs['initH'] = np.ones((rank, T)) / T
if 'alphaZ' in kwargs:
kwargs['alphaZ'] = 0
W, Z, H, norm, recon, div = plca.SIPLCA.analyze(
seq, rank=rank, win=win, initW=alignedW, **kwargs)
if viterbi_segmenter:
segmentation_function = nmf_analysis_to_segmentation_using_viterbi_path
else:
segmentation_function = nmf_analysis_to_segmentation
labels, segfun = segmentation_function(seq, win, W, Z, H, **kwargs)
return labels, W, Z, H, segfun, norm
def create_sparse_W_prior(shape, cutoff, slope):
"""Constructs sparsity parameters for W (alphaW) to learn pattern length
Follows equation (6) in the ISMIR paper referenced in this
module's docstring.
"""
# W.shape is (ndim, nseg, nwin)
prior = np.zeros(shape[-1])
prior[cutoff:] = prior[0] + slope * np.arange(shape[-1] - cutoff)
alphaW = np.zeros((shape[0], 1, shape[-1]))
alphaW[:,:] = prior
return alphaW
def nmf_analysis_to_segmentation(seq, win, W, Z, H, min_segment_length=32,
use_Z_for_segmentation=True, **ignored_kwargs):
if not use_Z_for_segmentation:
Z = np.ones(Z.shape)
segfun = []
for n, (w,z,h) in enumerate(zip(np.transpose(W, (1, 0, 2)), Z, H)):
reconz = plca.SIPLCA.reconstruct(w, z, h)
score = np.sum(reconz, 0)
# Smooth it out
score = np.convolve(score, np.ones(min_segment_length), 'same')
# kernel_size = min_segment_length
# if kernel_size % 2 == 0:
# kernel_size += 1
# score = sp.signal.medfilt(score, kernel_size)
segfun.append(score)
# Combine correlated segment labels
C = np.reshape([np.correlate(x, y, mode='full')[:2*win].max()
for x in segfun for y in segfun],
(len(segfun), len(segfun)))
segfun = np.array(segfun)
segfun /= segfun.max()
labels = np.argmax(np.asarray(segfun), 0)
remove_short_segments(labels, min_segment_length)
return labels, segfun
def nmf_analysis_to_segmentation_using_viterbi_path(seq, win, W, Z, H,
selfloopprob=0.9,
use_Z_for_segmentation=True,
min_segment_length=32,
**ignored_kwargs):
if not use_Z_for_segmentation:
Z = np.ones(Z.shape)
rank = len(Z)
T = H.shape[1]
likelihood = np.empty((rank, T))
for z in xrange(rank):
likelihood[z] = plca.SIPLCA.reconstruct(W[:,z], Z[z], H[z]).sum(0)
transmat = np.zeros((rank, rank))
for z in xrange(rank):
transmat[z,:] = (1 - selfloopprob) / (rank - 1 + np.finfo(float).eps)
transmat[z,z] = selfloopprob
# Find Viterbi path.
loglikelihood = np.log(likelihood)
logtransmat = np.log(transmat)
lattice = np.zeros(loglikelihood.shape)
traceback = np.zeros(loglikelihood.shape, dtype=np.int)
lattice[0] = loglikelihood[0]
for n in xrange(1, T):
pr = logtransmat.T + lattice[:,n-1]
lattice[:,n] = np.max(pr, axis=1) + loglikelihood[:,n]
traceback[:,n] = np.argmax(pr, axis=1)
# Do traceback to find most likely path.
reverse_state_sequence = []
s = lattice[:,-1].argmax()
for frame in reversed(traceback.T):
reverse_state_sequence.append(s)
s = frame[s]
labels = np.array(list(reversed(reverse_state_sequence)))
remove_short_segments(labels, min_segment_length)
return labels, likelihood
def remove_short_segments(labels, min_segment_length):
"""Remove segments shorter than min_segment_length."""
segment_borders = np.nonzero(np.diff(labels))[0]
short_segments_idx = np.nonzero(np.diff(segment_borders)
< min_segment_length)[0]
logger.info('Removing %d segments shorter than %d frames',
len(short_segments_idx), min_segment_length)
# Remove all adjacent short_segments.
segment_borders[short_segments_idx]
for idx in short_segments_idx:
start = segment_borders[idx]
try:
end = segment_borders[idx + 1] + 1
except IndexError:
end = len(labels)
try:
label = labels[start - 1]
except IndexError:
label = labels[end]
labels[start:end] = label
def evaluate_segmentation(labels, gtlabels, Z=[0]):
"""Calls Matlab to evaluate the given segmentation labels
labels and gtlabels are arrays containing a numerical label for
each frame of the sound (as returned by segment_song).
Returns a dictionary containing name-value pairs of the form
'metric name': value.
"""
# Matlab is really picky about the shape of these vectors. Make
# sure labels is a row vector.
nlabels = max(labels.shape)
if labels.ndim == 1:
labels = labels[np.newaxis,:]
elif labels.shape[0] == nlabels:
labels = labels.T
perf = {}
perf['pfm'], perf['ppr'], perf['prr'] = mlab.eval_segmentation_pairwise(
labels, gtlabels, nout=3)
perf['So'], perf['Su'] = mlab.eval_segmentation_entropy(labels, gtlabels,
nout=2)
perf['nlabels'] = len(np.unique(labels))
perf['effrank'] = len(Z)
perf['nsegments'] = np.sum(np.diff(labels) != 0) + 1
for k,v in perf.iteritems():
perf[k] = float(v)
return perf
def compute_effective_pattern_length(w):
wsum = w.sum(0)
# Find all taus in w that contain significant probability mass.
nonzero_idx, = np.nonzero(wsum > wsum.min())
winlen = nonzero_idx[-1] - nonzero_idx[0] + 1
return winlen
def convert_labels_to_segments(labels, frametimes, songlen=None):
"""Covert frame-wise segmentation labels to a list of segments in HTK
format"""
# Nonzero points in diff(labels) correspond to the final frame of
# a segment (so just index into labels to find the segment label)
boundaryidx = np.concatenate(([0], np.nonzero(np.diff(labels))[0],
[len(labels) - 1]))
boundarytimes = frametimes[boundaryidx]
segstarttimes = boundarytimes[:-1]
segendtimes = boundarytimes[1:]
seglabels = labels[boundaryidx[1:]]
labels = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
segments = ['%.4f\t%.4f\t%s' % (start, end, labels[label])
for start,end,label in zip(segstarttimes,segendtimes,seglabels)]
# Add silence before first beat and after last beat.
silencelabel = labels[seglabels.max() + 1]
segments = ['0.0\t%.4f\t%s' % (segstarttimes[0], silencelabel)] + segments
if songlen:
segments += ['%.4f\t%.4f\t%s' % (segendtimes[-1], songlen, silencelabel)]
return '\n'.join(segments + [''])
def _compute_summary_correlation(A, B):
return sum(np.correlate(A[x], B[x], 'full') for x in xrange(A.shape[0]))
def find_downbeat(V, W):
newW = W.copy()
for k in xrange(W.shape[1]):
Wlen = compute_effective_pattern_length(W[:,k,:])
Wk = W[:,k,:Wlen]
corr = np.array([_compute_summary_correlation(plca.shift(Wk, r, 1), V)
for r in xrange(Wlen)])
bestshift = corr[:,Wlen:-Wlen].sum(1).argmin()
print k, Wlen, bestshift
newW[:,k,:Wlen] = plca.shift(Wk, bestshift, 1)
return newW
def find_downbeat_slow(V, W, Z, H, **kwargs):
bopt = np.zeros(len(Z), dtype=int)
nW = np.zeros(W.shape)
nH = np.zeros(H.shape)
for k in np.argsort(Z)[::-1]:
Wlen = compute_effective_pattern_length(W[:,k,:])
params = []
logprobs = []
for b in xrange(Wlen):
initW = W
initW[:,k,:Wlen] = plca.shift(W[:,k,:Wlen], b, axis=1)
W,Z,H,norm,recon,logprob = plca.FactoredSIPLCA2.analyze(
V, rank=len(Z), win=[H.shape[1], W.shape[-1]],
niter=50, circular=[True,False],
initW=initW, initH=np.ones(H.shape), initZ=Z,
**kwargs)
params.append((W,Z,H))
logprobs.append(logprob)
print b, logprobs[-1]
bopt[k] = np.argmax(logprobs)
W[:,k] = params[bopt[k]][0][:,k]
nH[k] = params[bopt[k]][2][k]
return bopt, W, Z, nH
def shift_key_to_zero(W, Z, H):
newW = np.zeros(W.shape)
newH = np.zeros(H.shape)
for k in xrange(len(Z)):
key_profile = H[k].sum(1)
main_key = np.argmax(key_profile)
newW[:,k] = plca.shift(W[:,k], main_key, axis=0, circular=True)
newH[k] = plca.shift(H[k], -main_key, axis=0, circular=True)
return newW, Z, newH
def segment_wavfile(wavfile, **kwargs):
"""Convenience function to compute segmentation of the given wavfile
Keyword arguments are passed into segment_song.
Returns a string containing list of segments in HTK label format.
"""
features, beattimes, songlen = extract_features(wavfile)
labels, W, Z, H, segfun, norm = segment_song(features, **kwargs)
segments = convert_labels_to_segments(labels, beattimes, songlen)
return segments
def _parse_args(args):
if len(args) < 4 or len(args) % 2 == 1:
_die_with_usage()
kwargs = dict()
for key, value in zip(args[::2], args[1::2]):
if not key.startswith('-'):
print 'Error parsing argument "%s"' % key
_die_with_usage()
if key.lower() == '-i':
inputfilename = value
elif key.lower() == '-o':
outputfilename = value
else:
kwargs[key[1:]] = eval(value)
return inputfilename, outputfilename, kwargs
def _die_with_usage():
usage = """
USAGE: segmenter.py -i inputfile.wav -o outputfile [-param1 val1] [-param2 val2] ...
Segments inputfile.wav using the given parameters and writes the
output labels to outputfile.
"""
print usage
sys.exit(1)
def _main(args):
inputfilename, outputfilename, kwargs = _parse_args(args)
output = segment_wavfile(inputfilename, **kwargs)
f = open(outputfilename, 'w')
f.write(output)
f.close()
if __name__ == '__main__':
_main(sys.argv[1:])