-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathnii_nii2stl.m
383 lines (366 loc) · 14.1 KB
/
nii_nii2stl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
function nii_nii2stl (fnm, sthresh)
%input: T1 file in NIfTI format, output: mesh image
% fnm : input image
% sthresh : threshold for deciding if tissue is brain or air
%Similar
% http://bartferguson.nl/blog/?p=5
% http://hackaday.com/2015/08/25/you-own-your-mri-brainscan-do-something-interesting-with-it/
% http://www.pegors.net/3d-printing.html
% http://www.instructables.com/id/3D-Printing-from-MRI-data-in-5-steps/
% https://www.shapeways.com/blog/archives/21040-how-to-make-a-3d-print-of-your-brain.html
%Example
% nii_nii2stl('cr.nii')
if ~exist('fnm','var') %fnmFA not specified
fnm = spm_select(1,'image','Select T1 scan');
end;
if ~exist('sthresh','var'), sthresh = 0.15; end;
if isempty(which('spm')), error('Install SPM12'); end;
if isempty(which('nii_reslice_target')), error('Put nii_reslice_target.m in your Matlab path'); end;
if true
%1 get approximately aligned to template
coregEstTemplateSub(fnm);
%2 crop so we have a rough bounding box
fnm = cropImgSub(fnm);
% segment to find tissue types
newSegSub(fnm);
%3: set non-brain tissue to zero
else
[p,n,x] = spm_fileparts(fnm);
fnm = fullfile(p,['r',n,x]);
end
extractSub(sthresh, fnm, false); %save scalp extracted image
bfnm = extractSub(sthresh, fnm, true); %save binarized image
%4: make watertight
ffnm = watertightSub(bfnm);
%5 make mesh
makeMeshSub(ffnm);
%6: make hollow (cheaper)
hfnm = makeHollowSub(ffnm);
%7 make mesh
makeMeshSub(hfnm);
%end nii_nii2stl()
function fnm = cropImgSub(fnm)
%tarhdr.mat = [-1 0 0 79; 0 1 0 -113; 0 0 1 -51; 0 0 0 1];
%tarhdr.dim = [157 189 136];
tarhdr.mat = [-0.75 0 0 78.3750; 0 0.75 0 -113; 0 0 0.75 -51; 0 0 0 1];
tarhdr.dim = [209 252 181];
hdr = nii_reslice_target(fnm,'',tarhdr);
fnm = hdr.fname;
%cropImgSub()
function coregEstTemplateSub(vols)
%vols: images to coregister - first used for estimate
template = fullfile(spm('Dir'),'canonical','avg152T1.nii');
if ~exist(template,'file')
error('Unable to find template named %s\n', template);
end
if ischar(vols)
vols = cellstr(vols);
end
mbatch{1}.spm.spatial.coreg.estimate.ref = {template};
mbatch{1}.spm.spatial.coreg.estimate.source = {[deblank(vols{1}),',1']};%{'/Users/rorden/Desktop/3D.nii,1'};
if numel(vols) > 1
mbatch{1}.spm.spatial.coreg.estimate.other = vols(2:end);% {''};
else
mbatch{1}.spm.spatial.coreg.estimate.other = {''};
end
mbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
mbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4 2];
mbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
mbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7 7];
spm_jobman('run',mbatch);
%end coregEstTemplateSub()
function hfnm = makeHollowSub(fnm)
cropBottom = 15;
fprintf('Making hollow %s, cropping bottom %d slices for an escape hole\n', fnm, cropBottom);
hdr = spm_vol(fnm);
img = spm_read_vols(hdr);
img = (img - min(img(:))) / ( max(img(:)) - min(img(:)) ); %normalize 0..1
smth = img + 0.0;
spm_smooth(img,smth,4);
img(smth > 0.995) = 0;
%smooth a second time: hopefully marching-cubes will provide get subvoxel precision
orig = img + 0.0;
spm_smooth(orig,img,1); %just one voxel fwhm - very mild
img(:,:,1:cropBottom) = 0;
[pth,nam,ext, ~] = spm_fileparts(deblank(fnm));
hfnm = fullfile(pth,['h', nam, ext]);
hdr.fname = hfnm;
hdr.pinfo(1) = 1/255;
spm_write_vol(hdr,img);
%end makeHollowSub()
function sfnm = makeMeshSub(fnm)
hdr = spm_vol(fnm);
img = spm_read_vols(hdr);
thresh = max(img(:)) / 2;
reduce = 0.1; %reduce mesh complexity to 10%, smaller values for smaller files
FV = isosurface(img,thresh);
FV = reducepatch(FV,reduce);
%BELOW: FAST vector for converting from slice indices to mm
vx = [ FV.vertices ones(size(FV.vertices,1),1)];
vx = mtimes(hdr.mat,vx')';
FV.vertices = vx(:,1:3);
[pth,nam] = spm_fileparts(fnm);
sfnm = fullfile(pth,[nam, '.stl']);
stlwriteSub(sfnm, FV);
mfnm = fullfile(pth,[nam, '.mat']);
matwriteSub(mfnm, FV);
%end makeMeshSub()
function matwriteSub(fnm, FV)
%Save mesh in MATLAB format
s.vertices = FV.vertices;
s.faces = FV.faces; %#ok<STRNU>
%s.vertexColors = [];
%s.colorMap = [];
%s.colorMin = [];
%explicitly request v7 for compression and compatibility
% http://undocumentedmatlab.com/blog/improving-save-performance
save(fnm,'-v7','-struct', 's');
fprintf('If you have installed MRIcroS, you can view this mesh using the command:\n');
fprintf(' MRIcroS(''addLayer'', ''%s'') \n', fnm);
%end writeMat()
function newSegSub(t1)
%apply new segment - return name of warping matrix
template = fullfile(spm('Dir'),'tpm','TPM.nii');
if ~exist(template,'file')
error('Unable to find template named %s',template);
end
fprintf('NewSegment of %s\n', t1);
mbatch{1}.spm.spatial.preproc.channel(1).vols = {t1};
mbatch{1}.spm.spatial.preproc.channel(1).biasreg = 0.001;
mbatch{1}.spm.spatial.preproc.channel(1).biasfwhm = 60;
mbatch{1}.spm.spatial.preproc.channel(1).write = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(1).tpm = {[template ',1']};
mbatch{1}.spm.spatial.preproc.tissue(1).ngaus = 1;
mbatch{1}.spm.spatial.preproc.tissue(1).native = [1 0];
mbatch{1}.spm.spatial.preproc.tissue(1).warped = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(2).tpm = {[template ',2']};
mbatch{1}.spm.spatial.preproc.tissue(2).ngaus = 1;
mbatch{1}.spm.spatial.preproc.tissue(2).native = [1 0];
mbatch{1}.spm.spatial.preproc.tissue(2).warped = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(3).tpm = {[template ',3']};
mbatch{1}.spm.spatial.preproc.tissue(3).ngaus = 2;
mbatch{1}.spm.spatial.preproc.tissue(3).native = [1 0];
mbatch{1}.spm.spatial.preproc.tissue(3).warped = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(4).tpm = {[template ',4']};
mbatch{1}.spm.spatial.preproc.tissue(4).ngaus = 3;
mbatch{1}.spm.spatial.preproc.tissue(4).native = [1 0];
mbatch{1}.spm.spatial.preproc.tissue(4).warped = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(5).tpm = {[template ',5']};
mbatch{1}.spm.spatial.preproc.tissue(5).ngaus = 4;
mbatch{1}.spm.spatial.preproc.tissue(5).native = [1 0];
mbatch{1}.spm.spatial.preproc.tissue(5).warped = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(6).tpm = {[template ',6']};
mbatch{1}.spm.spatial.preproc.tissue(6).ngaus = 2;
mbatch{1}.spm.spatial.preproc.tissue(6).native = [0 0];
mbatch{1}.spm.spatial.preproc.tissue(6).warped = [0 0];
mbatch{1}.spm.spatial.preproc.warp.mrf = 1;
mbatch{1}.spm.spatial.preproc.warp.cleanup = 1;
mbatch{1}.spm.spatial.preproc.warp.reg = [0 0.001 0.5 0.05 0.2];
mbatch{1}.spm.spatial.preproc.warp.affreg = 'mni';
mbatch{1}.spm.spatial.preproc.warp.fwhm = 0;
mbatch{1}.spm.spatial.preproc.warp.samp = 3;
mbatch{1}.spm.spatial.preproc.warp.write = [0 0];
spm_jobman('run',mbatch);
%end newSegSub()
function t1Bet = extractSub(thresh, t1, probMap)
%subroutine to extract brain from surrounding scalp
% t1: image extracted, requires corresponding 'c1','c2' tissue maps
fprintf('Brain extraction of %s\n', t1);
[pth,nam,ext] = spm_fileparts(t1);
c1 = fullfile(pth,['c1',nam,ext]);
c2 = fullfile(pth,['c2',nam,ext]);
if ~exist(c1,'file') || ~exist(c2,'file')
error('Unable to find tissue maps %s %s', c1,c2);
end
%load headers
mi = spm_vol(t1);%bias corrected T1
gi = spm_vol(c1);%Gray Matter map
wi = spm_vol(c2);%White Matter map
%load images
m = spm_read_vols(mi);
g = spm_read_vols(gi);
w = spm_read_vols(wi);
w = g+w;
if thresh <= 0
if ~exist('probMap','var') || ~probMap
m=m.*w;
end;
else
mask= zeros(size(m));
mask(w >= thresh) = 255;
maskIn = mask;
spm_smooth(maskIn,mask,1); %feather the edges
mask = mask / 255;
if ~exist('probMap','var') || ~probMap
m=m.*mask;
else
m = mask;
end;
end;
if exist('probMap','var') && probMap
% m = m * 1000;
mi.pinfo(1) = 1/255;
mi.fname = fullfile(pth,['p', nam, ext]);
else
mi.fname = fullfile(pth,['b', nam, ext]);
end
mi.dt(1) = 4; %16-bit precision more than sufficient uint8=2; int16=4; int32=8; float32=16; float64=64
spm_write_vol(mi,m);
t1Bet = mi.fname;
%end extractSub()
function ffnm = watertightSub(fnm)
%this is going to be very slow....
fprintf('Flood fill of %s\n', fnm);
hdr = spm_vol(fnm);
img = spm_read_vols(hdr);
%img = dilateSub(img);
fimg = floodSub(img, true); %blurry image with center max values
img(fimg == max(fimg(:))) = max(img(:)); %fill ventricles
img = floodSub(img, false); %blurry image with center max values
[pth,nam,ext] = spm_fileparts(fnm);
ffnm = fullfile(pth,['f', nam, ext]);
hdr.fname = ffnm;
hdr.pinfo(1) = 1/255;
spm_write_vol(hdr,img);
%end watertightSub()
% function img = dilateSub(img)
% img = (img - min(img(:))) / ( max(img(:)) - min(img(:)) );
% thresh = 0.2;
% smth = img + 0.0;
% spm_smooth(img,smth,2);
% img= zeros(size(img));
% img((smth >= thresh)) = 1;
%%end dilateSub()
function img = floodSub(img, isFirstPass)
%similar to http://www.mathworks.com/matlabcentral/fileexchange/12184-floodfill3d
if isFirstPass
thresh = max(img(:))/ 1000; %e.g. 0.1%
else
thresh = max(img(:))/ 2; %e.g. 0.50%
end
imgBin = (img < thresh);
imgBin = double(imgBin); % In case a logical matrix comes in.
imgBin(1,:,:) = NaN; %pad LEFT
imgBin(end,:) = NaN; %pad RIGHT
imgBin(:,1,:) = NaN; %pad ANTERIOR
imgBin(:,end,:) = NaN; %pad POSTERIOR
imgBin(:,:,1) = NaN; %pad INFERIOR
imgBin(:,:,end) = NaN; %pad SUPERIOR
imgBin = floodFill3DSub(imgBin, [2,2,2]);
%fill bubbles
mx = max(img(:));
img(isfinite(imgBin))= mx;
%next: optional - blur to feather edges - only useful if marching cubes uses subvoxel smoothing
maskIn = img + 0.0;
if isFirstPass
spm_smooth(maskIn,img,2); %feather the edges a lot: only center is filled
else
spm_smooth(maskIn,img,1); %feather the edges a lot: weak blur
end
%end floodSub()
%Copyrights for Matlab Central Code
% stlwriteSub Copyright (c) 2015, Sven Holcombe
% floodFill3DSub Copyright (c) 2006, F Dinath
%
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
function [A] = floodFill3DSub(A, point)
% http://www.mathworks.com/matlabcentral/fileexchange/12184-floodfill3d
% [B] = FloodFill3D(A, slice);
% This program flood fills a 6-connected 3D region. The input matrix MUST
% be a binary image. The user will select a seed (point) in the matrix to
% initiate the flood fill. You must specify the matrix slice in which you
% wish to place the seed.
%
% A = binary matrix
% slice = a chosen slice in the matrix where you wish to place the seed.
%
% Enjoy,
% F. Dinath
if A(point(1), point(2), point(3));
A(point(1), point(2), point(3)) = NaN;
a{1} = sub2ind(size(A), point(1), point(2), point(3));
i = 1;
while 1
i = i+1;
a{i} = []; %#ok<AGROW>
[x, y, z] = ind2sub(size(A), a{i-1});
ob = nonzeros((A(sub2ind(size(A), x, y, z-1)) == 1).*sub2ind(size(A), x, y, z-1));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
ob = nonzeros((A(sub2ind(size(A), x, y, z+1)) == 1).*sub2ind(size(A), x, y, z+1));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
ob = nonzeros((A(sub2ind(size(A), x-1, y, z)) == 1).*sub2ind(size(A), x-1, y, z));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
ob = nonzeros((A(sub2ind(size(A), x+1, y, z)) == 1).*sub2ind(size(A), x+1, y, z));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
ob = nonzeros((A(sub2ind(size(A), x, y-1, z)) == 1).*sub2ind(size(A), x, y-1, z));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
ob = nonzeros((A(sub2ind(size(A), x, y+1, z)) == 1).*sub2ind(size(A), x, y+1, z));
A(ob) = NaN;
a{i} = [a{i} ob']; %#ok<AGROW>
if isempty(a{i});
break;
end
end
end
%end floodFill3DSub()
function stlwriteSub(fnm, FV)
% http://www.mathworks.com/matlabcentral/fileexchange/36770-stlwrite-write-binary-or-ascii-stl-file
% Original idea adapted from surf2stl by Bill McDonald. Huge speed
% improvements implemented by Oliver Woodford. Non-Delaunay triangulation
% of quadrilateral surface courtesy of Kevin Moerman. FaceColor
% implementation by Grant Lohsen.
%
% Author: Sven Holcombe, 11-24-11
% Create the facets
facets = single(FV.vertices');
%The following line is similar to MeshLab's Filters/Normals/InvertFacesOrientation
%facets([1,3],:)=facets([3,1],:);
facets = reshape(facets(:,FV.faces'), 3, 3, []);
% Compute their normals
V1 = squeeze(facets(:,2,:) - facets(:,1,:));
V2 = squeeze(facets(:,3,:) - facets(:,1,:));
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:);
clear V1 V2
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1)));
facets = cat(2, reshape(normals, 3, 1, []), facets);
clear normals
fid = fopen(fnm, 'w');
fprintf(fid, '%-80s', 'stlwrite from Sven Holcombe'); % Title
fwrite(fid, size(facets, 3), 'uint32'); % Number of facets
% Add one uint16(0) to the end of each facet using a typecasting trick
facets = reshape(typecast(facets(:), 'uint16'), 12*2, []);
% Set the last bit to 0 (default) or supplied RGB
facets(end+1,:) = 0;
fwrite(fid, facets, 'uint16');
%end stlwriteSub()
% Close the file
fclose(fid);
fprintf('Wrote %d facets\n',size(facets, 2));
%end stlwriteSub()