-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
888 lines (807 loc) · 33.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
import os
import torch
import wandb
import torchvision
import numpy as np
from pathlib import Path
from einops import rearrange
import torch.distributed as dist
import torch.multiprocessing as mp
from sklearn.model_selection import KFold, train_test_split
import torchvision.transforms.functional as F
from utils.scheduler import WarmupCosineSchedule
from torch.utils.data import DataLoader, DistributedSampler, Subset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from loss.mse_loss import MSELoss
from loss.l1_loss import L1Loss
from loss.cross_entropy_loss import CrossEntropyLoss
from loss.lift_loss import LiftedStructureLoss
from loss.triplet_loss_metric import TripletLossMetricLearning
from loss.contrastive_loss import ContrastiveLoss
from model.bevrender import BEVRender
from configuration.config import get_config, save_config_given_dir
from utils.utils import get_logger, get_save_name, save_model, count_parameters
from dataloader.dataprocessor import DatasetProcessor
def ddp_setup(rank, world_size):
init_process_group(
backend="nccl", init_method="env://", rank=rank, world_size=world_size
)
class Trainer:
# model_output_dim = 64 * 56 * 56
model_output_dim = 64 * 28 * 28
def __init__(
self,
camera_encoder: torch.nn.Module,
map_encoder: torch.nn.Module,
train_val_dataset,
batch_size: int,
num_workers: int,
pin_memory: bool,
k_fold: int,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler,
total_epochs: int,
gpu_id: int,
device,
log_train_img_batch_frequency: int,
log_val_img_batch_frequency: int,
val_frequency: int,
val_metric: str,
save_val_results: bool,
work_dir: str,
distributed: bool,
save_ckpt: bool,
loss_type: str,
seed,
logger=None,
wandb_run=None,
) -> None:
self.gpu_id = gpu_id
self.device = device
self.train_val_dataset = train_val_dataset
self.k_fold = k_fold
self.seed = seed
self.batch_size = batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
self.optimizer = optimizer
self.scheduler = scheduler
self.work_dir = work_dir
self.logger = logger
self.wandb_run = wandb_run
self.loss_type = loss_type
self.val_metric = val_metric
self.distributed = distributed
self.save_ckpt = save_ckpt
self.save_val_results = save_val_results
self.log_train_img_batch_frequency = log_train_img_batch_frequency
self.log_val_img_batch_frequency = log_val_img_batch_frequency
self.val_frequency = val_frequency
"""record best epoch and loss"""
self.best_epoch = 0
self.best_epoch_loss = 1e8
self.best_epoch_recall = 0.0
self.total_epochs = total_epochs
"""set up training mode and loss type"""
self.image_rendering = False
self.image_retrieval = False
if (
"MSE" in loss_type
or "L1" in loss_type
or "CROSS_ENTROPY_RENDER" in loss_type
):
self.image_rendering = True
if (
"LIFT" in loss_type
or "TRIPLET" in loss_type
or "CONTRASTIVE" in loss_type
or "CROSS_ENTROPY_RTRVL" in loss_type
):
self.image_retrieval = True
if "MSE" in loss_type:
self.image_rendering_loss = MSELoss()
elif "L1" in loss_type:
self.image_rendering_loss = L1Loss()
elif "CROSS_ENTROPY_RENDER" in loss_type:
self.image_rendering_loss = CrossEntropyLoss()
if "LIFT" in loss_type:
self.image_retrieval_loss = LiftedStructureLoss()
elif "TRIPLET" in loss_type:
self.image_retrieval_loss = TripletLossMetricLearning()
elif "CONTRASTIVE" in loss_type:
self.image_retrieval_loss = ContrastiveLoss()
elif "CROSS_ENTROPY_RTRVL" in loss_type:
self.image_retrieval_loss = CrossEntropyLoss()
"""set up camera encoder and map encoder"""
if distributed:
camera_encoder = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
camera_encoder
)
self.camera_encoder = camera_encoder.to(device)
self.camera_encoder = DDP(
camera_encoder, device_ids=[gpu_id], find_unused_parameters=True
)
if map_encoder:
map_encoder = torch.nn.SyncBatchNorm.convert_sync_batchnorm(map_encoder)
self.map_encoder = map_encoder.to(device)
self.map_encoder = DDP(
map_encoder, device_ids=[gpu_id], find_unused_parameters=True
)
else:
self.camera_encoder = camera_encoder.to(device)
self.map_encoder = map_encoder.to(device) if map_encoder else None
"""set up batch size"""
self.train_num_batches = 0
self.val_num_batches = 0
"""set up total loss"""
self.tr_epoch_render_loss = 0.0
self.tr_epoch_retrieval_loss = 0.0
self.tr_epoch_loss = 0.0
self.val_epoch_render_loss = 0.0
self.val_epoch_retrieval_loss = 0.0
self.val_epoch_loss = 0.0
self.val_epoch_recall_1 = 0.0
self.val_epoch_recall_5 = 0.0
self.val_epoch_recall_10 = 0.0
def _run_epoch(
self, epoch: int, fold: int, train_loader, val_loader, apply_validation: bool
):
self.tr_epoch_render_loss = 0.0
self.tr_epoch_retrieval_loss = 0.0
self.tr_epoch_loss = 0.0
recall_1, recall_5, recall_10 = 0.0, 0.0, 0.0
(
self.logger.info(
"Training epoch {}, fold {}, training dataset: {}, validation dataset: {}".format(
epoch,
fold,
len(train_loader) * self.batch_size,
len(val_loader) * self.batch_size,
)
)
if self.gpu_id == 0
else None
)
if self.distributed:
train_loader.sampler.set_epoch(epoch)
"""training loop"""
for tr_idx, batch in enumerate(train_loader):
wandb_tr_dict = {}
tr_batch_loss = 0.0
"""
cmr_tensor: (bs, 6, 3, 512, 640)
map_tensor: (bs, 3, 224, 224)
veh_pose: (bs, 6, 3)
veh_type: (bs, 1)
timestamp: (bs)
"""
(ori_cmr_tensor, ori_map_tensor, veh_pose, veh_type, timestamp) = (
batch["camera"].to(self.gpu_id),
batch["map"].to(self.gpu_id),
batch["vehicle_pose"].to(self.gpu_id),
batch["vehicle_type"].to(self.gpu_id),
batch["timestamp"],
)
self.optimizer.zero_grad()
"""get model outputs"""
camera_tensor, wandb_tr_dict = self.camera_encoder(
ori_cmr_tensor, veh_pose, veh_type, wandb_tr_dict, return_wandb_log=True
)
map_tensor, wandb_tr_dict = (
self.map_encoder(ori_map_tensor, wandb_tr_dict, return_wandb_log=False)
if self.map_encoder
else (ori_map_tensor, wandb_tr_dict)
)
assert camera_tensor.shape == map_tensor.shape
"""add up losses for image rendering and retrieval"""
if self.image_rendering:
tr_batch_rendering_loss = self.image_rendering_loss.get_loss(
camera_tensor, map_tensor
)
tr_batch_loss += tr_batch_rendering_loss
avg_batch_render_loss = tr_batch_rendering_loss / self.train_num_batches
self.tr_epoch_render_loss += avg_batch_render_loss
self.tr_epoch_loss += avg_batch_render_loss
if self.image_retrieval:
tr_batch_retrieval_loss = self.image_retrieval_loss.get_loss(
camera_tensor, map_tensor
)
tr_batch_loss += tr_batch_retrieval_loss
avg_batch_retrieval_loss = (
tr_batch_retrieval_loss / self.train_num_batches
)
self.tr_epoch_retrieval_loss += avg_batch_retrieval_loss
self.tr_epoch_loss += avg_batch_retrieval_loss
"""backpropagation"""
tr_batch_loss.backward()
camera_grad_norm = (
torch.nn.utils.clip_grad_norm_(self.camera_encoder.parameters(), 1.0)
if self.camera_encoder
else None
)
map_grad_norm = (
torch.nn.utils.clip_grad_norm_(self.map_encoder.parameters(), 1.0)
if self.map_encoder
else None
)
self.optimizer.step()
"""log training for gpu 0 if distributed or for single gpu training"""
if (self.distributed and self.gpu_id == 0) or (not self.distributed):
self.log_batch(
idx=tr_idx,
render_loss=(
tr_batch_rendering_loss if self.image_rendering else None
),
retrieval_loss=(
tr_batch_retrieval_loss if self.image_retrieval else None
),
total_loss=tr_batch_loss,
camera_grad_norm=camera_grad_norm,
map_grad_norm=map_grad_norm,
num_batches=self.train_num_batches,
)
"""set up wandb log dictionary"""
if self.wandb_run:
wandb_tr_dict["train_batch_loss"] = tr_batch_loss
wandb_tr_dict["learning_rate"] = self.scheduler.get_last_lr()[0]
wandb_tr_dict["epoch"] = epoch
if self.image_rendering:
wandb_tr_dict["train_batch_render_loss"] = (
tr_batch_rendering_loss
)
if self.image_retrieval:
wandb_tr_dict["train_batch_retrieval_loss"] = (
tr_batch_retrieval_loss
)
wandb_tr_dict["camera_encoder_grad_norm"] = camera_grad_norm
if self.map_encoder:
wandb_tr_dict["map_encoder_grad_norm"] = map_grad_norm
if (
self.image_rendering
and tr_idx % self.log_train_img_batch_frequency == 0
):
wandb_tr_dict["train_image"] = wandb.Image(
self.get_log_image(
camera_tensor[0],
ori_map_tensor[0],
ori_cmr_tensor[0, -1, ...],
),
caption=f"train epoch {epoch} - {timestamp[0]}",
)
if tr_idx == self.train_num_batches - 1:
if self.image_rendering:
wandb_tr_dict["train_epoch_render_loss"] = (
self.tr_epoch_render_loss
)
if self.image_retrieval:
wandb_tr_dict["train_epoch_retrieval_loss"] = (
self.tr_epoch_retrieval_loss
)
wandb_tr_dict["train_epoch_loss"] = self.tr_epoch_loss
self.wandb_run.log(
wandb_tr_dict,
)
"""validation loop"""
if apply_validation and (epoch + 1) % self.val_frequency == 0:
self.logger.info(f"Validation epoch {epoch}") if self.gpu_id == 0 else None
self.val_epoch_render_loss = 0.0
self.val_epoch_retrieval_loss = 0.0
self.val_epoch_loss = 0.0
self.val_epoch_recall_1 = 0.0
self.val_epoch_recall_5 = 0.0
self.val_epoch_recall_10 = 0.0
"""if self.distributed:
val_loader.sampler.set_epoch(epoch)"""
if self.image_retrieval:
global_camera_tensor, global_map_tensor = np.zeros(
(self.batch_size * self.val_num_batches, self.model_output_dim)
), np.zeros(
(self.batch_size * self.val_num_batches, self.model_output_dim)
)
self.camera_encoder.eval()
if self.map_encoder:
self.map_encoder.eval()
with torch.no_grad():
for val_idx, batch in enumerate(val_loader):
wandb_val_dict = {}
val_batch_loss = 0.0
(
ori_cmr_tensor,
ori_map_tensor,
veh_pose,
veh_type,
timestamp,
) = (
batch["camera"].to(self.gpu_id),
batch["map"].to(self.gpu_id),
batch["vehicle_pose"].to(self.gpu_id),
batch["vehicle_type"].to(self.gpu_id),
batch["timestamp"],
)
"""get model outputs"""
camera_tensor, wandb_val_dict = self.camera_encoder(
ori_cmr_tensor,
veh_pose,
veh_type,
wandb_val_dict,
return_wandb_log=True,
)
map_tensor, wandb_val_dict = (
self.map_encoder(
ori_map_tensor, wandb_val_dict, return_wandb_log=False
)
if self.map_encoder
else (ori_map_tensor, wandb_val_dict)
)
"""add up losses for image rendering"""
if self.image_rendering:
val_batch_rendering_loss = self.image_rendering_loss.get_loss(
camera_tensor, map_tensor
)
val_batch_loss += val_batch_rendering_loss
avg_batch_render_loss = (
val_batch_rendering_loss / self.val_num_batches
)
self.val_epoch_render_loss += avg_batch_render_loss
self.val_epoch_loss += avg_batch_render_loss
"""add up losses for image retrieval"""
if self.image_retrieval:
global_camera_tensor[
val_idx * self.batch_size : (val_idx + 1) * self.batch_size,
:,
] = (
camera_tensor.detach().cpu().numpy()
)
global_map_tensor[
val_idx * self.batch_size : (val_idx + 1) * self.batch_size,
:,
] = (
map_tensor.detach().cpu().numpy()
)
val_batch_retrieval_loss = self.image_retrieval_loss.get_loss(
camera_tensor, map_tensor
)
val_batch_loss += val_batch_retrieval_loss
avg_batch_retrieval_loss = (
val_batch_retrieval_loss / self.val_num_batches
)
self.val_epoch_retrieval_loss += avg_batch_retrieval_loss
self.val_epoch_loss += avg_batch_retrieval_loss
"""log validation"""
if self.gpu_id == 0:
self.log_batch(
idx=val_idx,
render_loss=(
val_batch_rendering_loss
if self.image_rendering
else None
),
retrieval_loss=(
val_batch_retrieval_loss
if self.image_retrieval
else None
),
total_loss=val_batch_loss,
num_batches=self.val_num_batches,
)
"""set up wandb log dictionary"""
if self.wandb_run:
wandb_val_dict["val_batch_loss"] = val_batch_loss
wandb_val_dict["epoch"] = epoch
if self.image_rendering:
wandb_val_dict["val_batch_render_loss"] = (
val_batch_rendering_loss
)
if self.image_retrieval:
wandb_val_dict["val_batch_retrieval_loss"] = (
val_batch_retrieval_loss
)
if (
self.image_rendering
and val_idx % self.log_val_img_batch_frequency == 0
):
wandb_val_dict["val_image"] = wandb.Image(
self.get_log_image(
camera_tensor[0],
ori_map_tensor[0],
ori_cmr_tensor[0, -1, ...],
),
caption=f"validation epoch {epoch} - {timestamp[0]}",
)
if val_idx == self.val_num_batches - 1:
wandb_val_dict["val_epoch_loss"] = self.val_epoch_loss
if self.image_retrieval:
"""calculating & logging retrieval recall"""
recall_1, recall_5, recall_10 = self.get_recall(
global_camera_tensor, global_map_tensor
)
self.val_epoch_recall_1 = recall_1
self.val_epoch_recall_5 = recall_5
self.val_epoch_recall_10 = recall_10
wandb_val_dict["val_R@1"] = recall_1
wandb_val_dict["val_R@5"] = recall_5
wandb_val_dict["val_R@10"] = recall_10
self.wandb_run.log(
wandb_val_dict,
)
if self.val_metric == "LOSS":
if self.val_epoch_loss < self.best_epoch_loss:
self.best_epoch_loss = self.val_epoch_loss
self.best_epoch = epoch
(
self.save_checkpoint(epoch, best=True)
if self.save_ckpt and self.gpu_id == 0
else None
)
(
self.save_val_images(epoch, val_loader)
if self.save_val_results
else None
)
else:
(
self.save_checkpoint(epoch, best=False)
if self.save_ckpt and self.gpu_id == 0
else None
)
elif self.val_metric == "RECALL":
if self.val_epoch_recall_5 > self.best_epoch_recall:
self.best_epoch_recall = self.val_epoch_recall_5
self.best_epoch = epoch
(
self.save_checkpoint(epoch, best=True)
if self.save_ckpt and self.gpu_id == 0
else None
)
else:
(
self.save_checkpoint(epoch, best=False)
if self.save_ckpt and self.gpu_id == 0
else None
)
self.camera_encoder.train()
self.map_encoder.train() if self.map_encoder else None
if self.distributed:
dist.barrier()
self.scheduler.step()
if (
apply_validation
and (epoch + 1) % self.val_frequency == 0
and self.gpu_id == 0
):
self.logger.info(
"Summary of epoch {}/{} at GPU {} - training loss: {:4.8f}, validation loss: {:4.8f}".format(
epoch,
self.total_epochs,
self.gpu_id,
self.tr_epoch_loss,
self.val_epoch_loss,
)
)
if self.image_retrieval:
self.logger.info(
"Summary of epoch {}/{} at GPU {} - R@1-{:2.2f}%, R@5-{:2.2f}%, R@10-{:2.2f}%".format(
epoch,
self.total_epochs,
self.gpu_id,
recall_1,
recall_5,
recall_10,
)
)
else:
(
self.logger.info(
"Summary of epoch {}/{} at GPU {} - training loss: {:.8f}".format(
epoch, self.total_epochs, self.gpu_id, self.tr_epoch_loss
)
)
if self.gpu_id == 0
else None
)
self.logger.info("") if self.gpu_id == 0 else None
def get_recall(self, global_camera_tensor, global_map_tensor):
recall_1, recall_5, recall_10 = 0.0, 0.0, 0.0
dist_array = 2.0 - 2.0 * np.matmul(global_camera_tensor, global_map_tensor.T)
length_recall_array = 11
val_accuracy = np.zeros(length_recall_array)
for i in range(length_recall_array):
accuracy = 0.0
data_amount = 0.0
for k in range(dist_array.shape[0]):
gt_dist = dist_array[k, k]
prediction = np.sum(dist_array[:, k] < gt_dist)
if prediction < i:
accuracy += 1.0
data_amount += 1.0
accuracy /= data_amount
val_accuracy[i] = accuracy
recall_1 = val_accuracy[1] * 100
recall_5 = val_accuracy[5] * 100
recall_10 = val_accuracy[10] * 100
return recall_1, recall_5, recall_10
def log_batch(
self,
idx,
total_loss,
num_batches,
render_loss=None,
retrieval_loss=None,
camera_grad_norm=None,
map_grad_norm=None,
):
log_string = "step: {i:3d}/{len:3d},".format(i=idx, len=num_batches)
if self.image_rendering:
log_string += f" render_ls {render_loss:4.6f},"
if self.image_retrieval:
log_string += f" retrvl_ls {retrieval_loss:4.6f},"
log_string += f" total_ls {total_loss:4.6f},"
# log_string += f" cuda {cuda_memory:2.4f}GB,"
if camera_grad_norm:
log_string += f" cmr_grad {camera_grad_norm:6.4f},"
if map_grad_norm:
log_string += f" map_grad {map_grad_norm:6.4f}"
self.logger.info(log_string)
def save_checkpoint(self, epoch, best=False):
save_model(
savePath=self.work_dir,
camera_encoder=self.camera_encoder,
map_encoder=self.map_encoder if self.map_encoder else None,
optimizer=self.optimizer,
scheduler=self.scheduler,
epoch=epoch,
best=best,
)
self.logger.info(f"model saved at epoch {epoch} and GPU {self.gpu_id}")
def save_val_images(self, epoch, val_loader):
val_image_dir = Path(self.work_dir, "best_epoch_val".format(self.gpu_id))
os.makedirs(val_image_dir, exist_ok=True)
for batch in val_loader:
ori_cmr_tensor, veh_pose, veh_type, timestamp = (
batch["camera"].to(self.gpu_id),
batch["vehicle_pose"].to(self.gpu_id),
batch["vehicle_type"].to(self.gpu_id),
batch["timestamp"],
)
camera_tensor, _ = self.camera_encoder(
ori_cmr_tensor, veh_pose, veh_type, None, return_wandb_log=False
)
for output, ts in zip(camera_tensor, timestamp):
torchvision.utils.save_image(
output,
Path(
val_image_dir,
f"{ts}.png",
),
)
(
self.logger.info(
"image saved at epoch {} and GPU {}".format(epoch, self.gpu_id)
)
if self.gpu_id == 0
else None
)
def get_log_image(self, model_output, map_tensor, camera_tensor):
log_img_map = (map_tensor - map_tensor.min()) / (
map_tensor.max() - map_tensor.min()
)
log_image = torch.cat(
(log_img_map, torch.zeros_like(log_img_map), model_output),
axis=2,
)
log_img_cmr = rearrange(
(camera_tensor - camera_tensor.min())
/ (camera_tensor.max() - camera_tensor.min()),
"b c h w -> c h (b w)",
)
log_img_cmr = F.resize(log_img_cmr, (224, 672))
log_image = torch.cat((log_img_cmr, log_image), axis=1)
return log_image
def train(self, apply_validation: bool):
num_epoch = 0
epoch_per_fold = 10
while num_epoch + 1 < self.total_epochs:
kfold = KFold(n_splits=self.k_fold, shuffle=True)
for fold, (train_index, val_index) in enumerate(
kfold.split(self.train_val_dataset)
):
train_dataset = Subset(self.train_val_dataset, train_index)
val_dataset = Subset(self.train_val_dataset, val_index)
if self.distributed:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
else:
train_sampler = None
val_sampler = None
train_loader = DataLoader(
dataset=train_dataset,
batch_size=self.batch_size,
sampler=train_sampler,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=self.batch_size,
sampler=val_sampler,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
drop_last=True,
)
for _ in range(epoch_per_fold):
self.train_num_batches = len(train_loader)
self.val_num_batches = len(val_loader)
self._run_epoch(
num_epoch, fold, train_loader, val_loader, apply_validation
)
num_epoch += 1
def load_train_objs(config, logger):
model = BEVRender(config, logger, mode="train")
model_parameters = list(model.parameters())
map_encoder = None
optimizer = torch.optim.AdamW(
model_parameters,
lr=config["LEARNING_RATE"],
weight_decay=config["WEIGHT_DECAY"],
eps=config["EPS"],
)
"""
scheduler - WarmupCosineSchedule
warpmup_steps: 5
t_total: config["TOTAL_EPOCHS"]
cycles: 0.5
last_epoch: -1
meaning - Linear warmup and then cosine decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
[
increase from 0 to 1 within 5 steps,
then decrease from 1 to 0 within (total_epoch - 5) steps
]
"""
scheduler = WarmupCosineSchedule(optimizer, 5, config["TOTAL_EPOCHS"])
return model, map_encoder, optimizer, scheduler
def process_train(
rank: int,
world_size: int,
distributed: bool,
ckpt_dir: str,
config,
):
if distributed:
ddp_setup(rank, world_size)
torch.cuda.set_device(rank)
device = torch.device("cuda", rank)
else:
device = torch.device("cuda", rank if torch.cuda.is_available() else "cpu")
logger = get_logger()
wandb_run = wandb.init(project="bev") if config["USE_WANDB"] and rank == 0 else None
camera_encoder, map_encoder, optimizer, scheduler = load_train_objs(config, logger)
count_parameters(camera_encoder, logger) if rank == 0 else None
jgw_info = config["MAP_JGW_INFO"]
data_processor = DatasetProcessor(
dataset_dir=config["DATASET_DIR"],
overlap=config["OVERLAP"],
distributed=distributed,
k_fold=config["K_FOLD"],
window_timespin=config["WINDOW_TIMESPIN"] * 1e6,
window_num_imgs=config["WINDOW_NUM_IMGS"],
batch_size=config["BATCH_SIZE"],
num_views=config["NUM_VIEWS"],
num_workers=config["NUM_WORKERS"],
pin_memory=config["PIN_MEMORY"],
resize_cmr_img=config["RESIZE_IMG"],
resize_img_height=config["RESIZE_IMG_HEIGHT"],
resize_img_width=config["RESIZE_IMG_WIDTH"],
img_norm_mean=config["CAMERA_NORM_MEAN"],
img_norm_std=config["CAMERA_NORM_STD"],
map_norm_mean=config["MAP_NORM_MEAN"],
map_norm_std=config["MAP_NORM_STD"],
gps_file_path=config["GPS_FILE_PATH"],
rgb_img_dir=config["RGB_IMG_DIR"],
map_img_dir=config["MAP_IMG_DIR"],
map_width=config["MAP_WIDTH"],
map_height=config["MAP_HEIGHT"],
map_resize_scale=config["MAP_RESIZE_SCALE"],
jgw_info=jgw_info,
logger=logger,
)
full_dataset = data_processor.process_dataset()
dataset_length = len(full_dataset)
if config["SPLIT_INF_SET"]:
dist.barrier() if distributed else None
indices = np.arange(dataset_length)
train_indices, inf_indices = train_test_split(
indices, test_size=config["INF_SET_RATIO"], random_state=config["SEED"]
)
train_val_dataset = Subset(full_dataset, train_indices)
inf_dataset = Subset(full_dataset, inf_indices)
if rank == 0:
logger.info("backbone architecture: {}".format(config["DAT_BACKBONE_TYPE"]))
logger.info(
"training set {}, inference set {}".format(
len(train_val_dataset), len(inf_dataset)
)
)
inf_set_save = {
"datalist": [inf_dataset.dataset.datalist[i] for i in inf_indices]
}
torch.save(inf_set_save, Path(ckpt_dir, "inference_dataset.pth"))
dist.barrier() if distributed else None
else:
train_val_dataset, inf_dataset = full_dataset, None
trainer = Trainer(
camera_encoder=camera_encoder,
map_encoder=map_encoder,
train_val_dataset=train_val_dataset,
batch_size=config["BATCH_SIZE"],
num_workers=config["NUM_WORKERS"],
pin_memory=config["PIN_MEMORY"],
k_fold=config["K_FOLD"],
optimizer=optimizer,
scheduler=scheduler,
total_epochs=config["TOTAL_EPOCHS"],
gpu_id=rank,
device=device,
log_train_img_batch_frequency=config["WANDB_LOG_IMG_FERQ_TRAIN"],
log_val_img_batch_frequency=config["WANDB_LOG_IMG_FERQ_VAL"],
val_frequency=config["VALIDATION_FREQUENCY"],
val_metric=config["VALIDATION_METRIC"],
save_val_results=config["SAVE_VAL_RESULTS"],
work_dir=ckpt_dir,
distributed=distributed,
save_ckpt=config["SAVE_CKPT"],
loss_type=config["LOSS_TYPE"],
seed=config["SEED"],
logger=logger,
wandb_run=wandb_run,
)
trainer.train(
apply_validation=config["APPLY_VALIDATION"],
)
if distributed:
destroy_process_group()
def main(world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
logger = get_logger()
config = get_config(print_or_not=True, save_or_not=False)
ckpt_dir = get_save_name(config=config, save_params=False)
save_config_given_dir(config, ckpt_dir)
"""set up seeds"""
torch.manual_seed(config["SEED"])
np.random.seed(config["SEED"])
logger.info("Working directory: {}".format(ckpt_dir))
logger.info("Loss type: {}".format(config["LOSS_TYPE"]))
if config["DISTRIBUTED_TRAINING"]:
logger.info(
"Distributed training starts, number of GPUs used: {}".format(world_size)
)
mp.spawn(
process_train,
args=(
world_size,
True,
ckpt_dir,
config,
),
nprocs=world_size,
join=True,
)
else:
logger.info("Single GPU training starts....")
process_train(
rank=0,
world_size=1,
distributed=False,
ckpt_dir=ckpt_dir,
config=config,
)
if __name__ == "__main__":
torch.cuda.empty_cache()
world_size = torch.cuda.device_count()
# world_size = 2
main(world_size)