-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
211 lines (185 loc) · 7.05 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import json
import logging
import os
import pprint
from typing import Dict, Tuple
import pytorch_lightning as pl
import torch
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
ModelSummary,
)
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.profiler import AdvancedProfiler, PyTorchProfiler
from sssl import utils
from sssl.config import Config, ConfigNs
from sssl.data.landsat8 import build_dataloaders
from sssl.model.backbone_module import BackboneModule
from sssl.utils import generate_output_dir_name, initialize_logging, mkdir_p
os.environ["TORCH_HOME"] = "../.torch"
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
logger = logging.getLogger("pytorch_lightning")
def main(cfg: Config, train_ns_cfg: ConfigNs) -> Tuple[str, str]:
# Make sure to set the random seed before the instantiation of a Trainer() so
# that each model initializes with the same weights.
# https://pytorch-lightning.readthedocs.io/en/stable/multi_gpu.html#distributed-data-parallel
seed_everything(cfg.seed)
if not cfg.do_pretrain:
raise ValueError()
run_output_dir = generate_output_dir_name(cfg)
mkdir_p(run_output_dir)
initialize_logging(run_output_dir, to_file=True)
cfg.run_output_dir = run_output_dir
logger.info("#############################################################")
logger.info("Running pretraining with output dir %s" % run_output_dir)
logger.info("#############################################################")
logger.info(pprint.pformat(cfg.to_dict(), indent=2))
# cfg.save(os.path.join(cfg.run_output_dir, 'cfg.json'), skip_unpicklable=True)
with open(os.path.join(cfg.run_output_dir, "cfg.json"), "w") as f:
json.dump(cfg.to_dict(), f, indent=2)
dataloader_dict = build_dataloaders(cfg)
model = make_model(cfg)
trainer_kwargs, model_checkpoint = build_trainer_kwargs(cfg, run_output_dir)
trainer = Trainer.from_argparse_args(
train_ns_cfg,
**trainer_kwargs,
)
ckpt_path = None
if cfg.continue_training_from_checkpoint: # or cfg.load_weights_from_checkpoint:
logger.info("Continue training from checkpoint %s" % cfg.checkpoint)
ckpt_path = cfg.checkpoint
if cfg.do_test:
model.save_predictions_to_file = True
trainer.test(model, dataloaders=dataloader_dict["val"], ckpt_path=ckpt_path)
else:
assert cfg.do_train
trainer.fit(
model,
train_dataloaders=dataloader_dict["train"],
val_dataloaders=dataloader_dict["val"],
ckpt_path=ckpt_path,
)
if cfg.do_validate_during_training:
logger.info(
"Best model: %s, %s"
% (model_checkpoint.best_model_score, model_checkpoint.best_model_path)
)
return run_output_dir, model_checkpoint.best_model_path
def build_trainer_kwargs(
cfg: Config, run_output_dir: str
) -> Tuple[Dict, ModelCheckpoint]:
tags = [
cfg.cnn_type,
cfg.pretrain.loss_type,
cfg.pretrain.space_limit_type,
str(cfg.seed),
cfg.landsat8_bands,
]
if cfg.pretrain.loss_type == "sssl":
tags.append(cfg.pretrain.augmentations)
wandb_logger = WandbLogger(
name=os.path.split(run_output_dir)[1],
project=cfg.pretrain.wandb_project_name,
entity=cfg.wandb_entity,
save_dir=run_output_dir,
offline=cfg.wandb_offline,
save_code=True,
tags=tags,
config=cfg.to_dict(),
)
for metric, summary in (("val_loss", "min"),):
logger.info("defining metric as %s: %s" % (summary, metric))
wandb_logger.experiment.define_metric(metric, summary=summary)
wandb_logger.experiment.define_metric(metric, summary="last")
trainer_kwargs = {
"logger": wandb_logger,
"deterministic": cfg.deterministic,
}
if cfg.profiler is not None:
if cfg.profiler == "advanced":
profiler = AdvancedProfiler(
output_filename=os.path.join(run_output_dir, "profile.txt")
)
else:
assert cfg.profiler == "pytorch"
profiler = PyTorchProfiler(
output_filename=os.path.join(run_output_dir, "profile.txt")
)
trainer_kwargs["profiler"] = profiler
callbacks = []
model_checkpoint = None
if cfg.do_validate_during_training:
model_checkpoint = ModelCheckpoint(
monitor=cfg.pretrain.model_checkpoint_monitor,
dirpath=os.path.join(run_output_dir, "checkpoints"),
filename="{epoch}-{step}",
save_top_k=-1, # save all checkpoints
mode=cfg.pretrain.model_checkpoint_monitor_min_or_max,
save_last=True,
)
callbacks.append(model_checkpoint)
if cfg.pretrain.early_stop not in [None, ""]:
logger.info("Using early stopping on %s" % cfg.pretrain.early_stop)
early_stopping = EarlyStopping(
cfg.pretrain.early_stop,
patience=cfg.pretrain.early_stop_patience,
mode=cfg.pretrain.early_stop_min_or_max,
min_delta=0.0001,
strict=False, # so monitoring only when epochs > E todo does this work?
verbose=True,
)
callbacks.append(early_stopping)
callbacks.append(ModelSummary(max_depth=10))
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
trainer_kwargs.update(
{
"callbacks": callbacks,
"check_val_every_n_epoch": 1,
"val_check_interval": cfg.pretrain.val_every_n_steps,
"sync_batchnorm": True,
"num_sanity_val_steps": cfg.num_sanity_val_steps,
}
)
if cfg.debug:
torch.autograd.set_detect_anomaly(True)
trainer_kwargs.update(
{
"num_sanity_val_steps": 2,
"min_epochs": 1,
"max_epochs": cfg.debug_max_epochs,
"check_val_every_n_epoch": 1,
"val_check_interval": 1.0,
"log_every_n_steps": 10,
"detect_anomaly": True,
}
)
if cfg.train.overfit_batches > 0:
trainer_kwargs.update(
{
"min_epochs": 2000,
"max_epochs": 2000,
}
)
else:
trainer_kwargs.update(
{
"limit_train_batches": 20,
"limit_val_batches": 5,
}
)
if not cfg.do_validate_during_training:
trainer_kwargs.update({"limit_val_batches": 0.0})
return trainer_kwargs, model_checkpoint
def make_model(cfg: Config) -> pl.LightningModule:
model = BackboneModule(cfg)
return model
if __name__ == "__main__":
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (32000, rlimit[1]))
cfg, train_ns_cfg = utils.build_configs()
main(cfg, train_ns_cfg)