-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathorder.py
219 lines (174 loc) · 6.13 KB
/
order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""The implementation of partially ordered versions (times) for use within a differential dataflow.
"""
class Version:
"""A partially, or totally ordered version (time), consisting of a tuple of
integers.
All versions within a scope of a dataflow must have the same dimension/number
of coordinates. One dimensional versions are totally ordered. Multidimensional
versions are partially ordered by the product partial order.
"""
def __init__(self, version):
if isinstance(version, int):
assert version >= 0
self.inner = (version,)
elif isinstance(version, list) or isinstance(version, tuple):
for i in version:
assert isinstance(i, int)
assert i >= 0
self.inner = tuple(version)
else:
assert 0 > 1
def __repr__(self):
return f"Version({self.inner})"
def __eq__(self, other):
return self.inner == other.inner
# The less than implementation used to sort versions must respect the partial
# order (important for reduce).
def __lt__(self, other):
return self.inner.__lt__(other.inner)
def __hash__(self):
return hash(self.inner)
def _validate(self, other):
assert len(self.inner) > 0
assert len(self.inner) == len(other.inner)
def less_equal(self, other):
self._validate(other)
for (i1, i2) in zip(self.inner, other.inner):
if i1 > i2:
return False
return True
def less_than(self, other):
if self.less_equal(other) is True and self.inner != other.inner:
return True
return False
def join(self, other):
self._validate(other)
out = []
for (i1, i2) in zip(self.inner, other.inner):
out.append(max(i1, i2))
return Version(out)
def meet(self, other):
self._validate(other)
out = []
for (i1, i2) in zip(self.inner, other.inner):
out.append(min(i1, i2))
return Version(out)
# TODO the proof for this is in the sharing arrangements paper.
def advance_by(self, frontier):
if frontier.inner == ():
return self
result = self.join(frontier.inner[0])
for elem in frontier.inner:
result = result.meet(self.join(elem))
return result
def extend(self):
elements = [e for e in self.inner]
elements.append(0)
return Version(elements)
def truncate(self):
elements = [e for e in self.inner]
elements.pop()
return Version(elements)
def apply_step(self, step):
assert step > 0
elements = [e for e in self.inner]
elements[-1] += step
return Version(elements)
# This keeps the min antichain.
# I fully stole this from frank. TODO: Understand this better
class Antichain:
"""A minimal set of incomparable versions."""
def __init__(self, elements):
self.inner = []
for element in elements:
self._insert(element)
def __repr__(self):
return f"Antichain({self.inner})"
def _insert(self, element):
for e in self.inner:
if e.less_equal(element):
return
self.inner = [x for x in self.inner if element.less_equal(x) is not True]
self.inner.append(element)
# TODO: is it true that the set of versions <= meet(x, y) is the intersection of the set of versions <= x and the set of versions <= y?
def meet(self, other):
out = Antichain([])
for element in self.inner:
out._insert(element)
for element in other.inner:
out._insert(element)
return out
def _equals(self, other):
elements_1 = [x for x in self.inner]
elements_2 = [y for y in other.inner]
if len(elements_1) != len(elements_2):
return False
elements_1.sort()
elements_2.sort()
for (x, y) in zip(elements_1, elements_2):
if x != y:
return False
return True
# Returns true if other dominates self
# in other words self < other means
# self <= other AND self != other
def less_than(self, other):
if self.less_equal(other) is not True:
return False
if self._equals(other):
return False
return True
def less_equal(self, other):
for o in other.inner:
less_equal = False
for s in self.inner:
if s.less_equal(o):
less_equal = True
if less_equal == False:
return False
return True
def less_equal_version(self, version):
for elem in self.inner:
if elem.less_equal(version):
return True
return False
def extend(self):
out = Antichain([])
for elem in self.inner:
out._insert(elem.extend())
return out
def truncate(self):
out = Antichain([])
for elem in self.inner:
out._insert(elem.truncate())
return out
def apply_step(self, step):
out = Antichain([])
for elem in self.inner:
out._insert(elem.apply_step(step))
return out
def _elements(self):
return [x for x in self.inner]
if __name__ == "__main__":
v0_0 = Version([0, 0])
v1_0 = Version([1, 0])
v0_1 = Version([0, 1])
v1_1 = Version([1, 1])
v2_0 = Version([2, 0])
assert v0_0.less_than(v1_0)
assert v0_0.less_than(v0_1)
assert v0_0.less_than(v1_1)
assert v0_0.less_equal(v1_0)
assert v0_0.less_equal(v0_1)
assert v0_0.less_equal(v1_1)
assert v1_0.less_than(v1_0) is not True
assert v1_0.less_equal(v1_0)
assert v1_0.less_equal(v0_1) is not True
assert v0_1.less_equal(v1_0) is not True
assert v0_1.less_equal(v1_1)
assert v1_0.less_equal(v1_1)
assert v0_0.less_equal(v1_1)
assert Antichain([v0_0]).less_equal(Antichain([v1_0]))
assert Antichain([v0_0])._equals(Antichain([v1_0])) is not True
assert Antichain([v0_0]).less_than(Antichain([v1_0]))
assert Antichain([v2_0, v1_1]).less_than(Antichain([v2_0]))