-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
executable file
·50 lines (39 loc) · 1.4 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os
import numpy as np
import scipy
from collections import OrderedDict
import time
from imageio import imsave
import data
from models.pix2pix_model import Pix2PixModel
from options.test_options import TestOptions
from util.visualizer import Visualizer
from util import util
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.utils import save_image
opt = TestOptions().parse()
dataloader = data.create_dataloader(opt)
model = Pix2PixModel(opt)
model.cuda().eval()
# test
for i, data_i in enumerate(dataloader):
time1 = time.time()
mask = data_i['oriinstance']
orilabel = data_i['orilabel'].cuda()
gen0, fmask = model(torch.cat((data_i['label'], data_i['instance']), 1).cuda(), mode='inference')
gen = F.interpolate(gen0, data_i['shape'], mode='bilinear')
mask = F.interpolate(fmask, data_i['shape'], mode='bilinear')
gen_comb = gen * (1-mask.cuda()) + (2*orilabel-1) * mask.cuda()
print(time.time() - time1)
name = data_i['path_lb'][0].strip().split('/')[-1]
im_np = util.tensor2im(gen_comb)
if len(im_np.shape) >= 4:
im_np = im_np[0]
scipy.misc.toimage(im_np).save('results/{}'.format(name), format='png')