forked from Adlik/Adlik
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_schema.json
196 lines (196 loc) · 5.62 KB
/
config_schema.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{
"$schema": "http://json-schema.org/draft-04/schema",
"properties": {
"serving_type": {
"type": "string",
"enum": [
"onnx",
"tf",
"tensorrt",
"openvino",
"tflite",
"tftrt"
],
"description": "target serving model type"
},
"model_name": {
"type": "string",
"description": "output model name"
},
"version": {
"type": "integer",
"minimum": 1,
"description": "version number of output model"
},
"max_batch_size": {
"type": "integer",
"minimum": 1,
"description": "maximum batch size of output serving model can support"
},
"input_model": {
"type": "string",
"description": "file path of a pre-trained model which can be Keras h5 model(*.h5), TensorFlow checkpoint or frozen graph(*.pb)"
},
"script_path": {
"type": "string",
"description": "file path of a model script which describes the model structure especially custom layers or operations , optional"
},
"input_layer_names": {
"type": "array",
"items": {
"type": "string"
},
"description": "Can not be given"
},
"output_layer_names": {
"type": "array",
"items": {
"type": "string"
},
"description": "Can not be given"
},
"input_formats": {
"type": "array",
"items": {
"enum": [
"channels_last",
"channels_first",
null
]
},
"description": "required when input is image"
},
"input_names": {
"type": "array",
"items": {
"type": "string"
},
"description": "input tensor names, required when input model is TensorFlow checkpoint"
},
"output_names": {
"type": "array",
"items": {
"type": "string"
},
"description": "output tensor names, required when input model is TensorFlow checkpoint"
},
"input_signatures": {
"type": "array",
"items": {
"type": "string"
},
"description": "alias of inputs, required when serving_type is tf"
},
"output_signatures": {
"type": "array",
"items": {
"type": "string"
},
"description": "alias of outputs, required when serving_type is tf"
},
"signature_keys": {
"type": "string",
"description": "required when the format of source model is saved model file"
},
"saved_model_tags": {
"type": "array",
"items": {
"type": "string"
},
"description": "required when the saved model file has multiple tag_sets"
},
"model_filename": {
"type": "string",
"description": "the path of the model file of the paddlepaddle"
},
"params_filename": {
"type": "string",
"description": "the path of the model params file of the paddlepaddle"
},
"opset_version": {
"type": "integer",
"description": "the opset version used by the paddlepaddle model"
},
"enable_onnx_checker": {
"type": "boolean",
"description": "whether to use the official ONNX toolkit to check the correctness of the compiled model"
},
"optimize_offline": {
"type": "boolean",
"description": "whether to build TensorRT engines before runtime"
},
"export_path": {
"type": "string",
"description": "path of output model"
},
"input_shapes": {
"type": "array",
"description": "the shape of input, required when the source model format is Caffe format and optional when serving_type is openvino"
},
"data_type": {
"type": "string",
"enum": [
"bool",
"int8",
"uint8",
"int16",
"uint16",
"int32",
"uint32",
"int64",
"uint64",
"float16",
"bfloat16",
"float",
"double",
"complex64",
"complex128"
],
"description": "the data type of input, required when the source model format is Caffe format"
},
"enable_nhwc_to_nchw": {
"type": "boolean",
"description": "required when serving_type is openvino, when model is channel last set the 'enable_nhwc_to_nchw' as true"
},
"enable_fp16": {
"type": "integer",
"description": "control whether to quantify the model to fp16, used when serving_type is tensorrt or tf-trt"
},
"enable_int8": {
"type": "integer",
"description": "control whether to quantify the model to int8, used when serving_type is tensorrt or tf-trt"
},
"enable_strict_types": {
"type": "integer",
"description": "control whether to strictly implement fp16 quantification, used when serving_type is tensorrt"
},
"optimization": {
"type": "boolean",
"description": "control whether to optimize the model, used when serving_type is tensorflow lite"
},
"supported_types": {
"type": "string",
"description": "list of types for constant values on the target device, used when serving_type is tensorflow lite"
},
"supported_ops": {
"type": "string",
"description": "set of OpsSet options supported by the device, used when serving_type is tensorflow lite"
},
"inference_input_type": {
"type": "string",
"description": "data type of the input layer, used when serving_type is tensorflow lite"
},
"inference_output_type": {
"type": "string",
"description": "data type of the output layer, used when serving_type is tensorflow lite"
}
},
"required": [
"serving_type",
"model_name",
"max_batch_size",
"input_model",
"export_path"
],
"additionalProperties": true
}