-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patheval_utils.py
390 lines (326 loc) · 13.9 KB
/
eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
import misc.utils as utils
def language_eval(dataset, preds, model_id, split):
import sys
if 'coco' in dataset:
sys.path.append("coco-caption")
annFile = 'coco-caption/annotations/captions_val2014.json'
else:
sys.path.append("f30k-caption")
annFile = 'f30k-caption/annotations/dataset_flickr30k.json'
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
encoder.FLOAT_REPR = lambda o: format(o, '.3f')
if not os.path.isdir('eval_results'):
os.mkdir('eval_results')
cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
coco = COCO(annFile)
valids = coco.getImgIds()
preds_filt = [p for p in preds if p['image_id'] in valids]
print('using %d/%d predictions' % (len(preds_filt), len(preds)))
json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
# create output dictionary
out = {}
for metric, score in cocoEval.eval.items():
out[metric] = score
imgToEval = cocoEval.imgToEval
# collect SPICE_sub_score
for k in imgToEval.values()[0]['SPICE'].keys():
if k != 'All':
out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()])
out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean()
for p in preds_filt:
image_id, caption = p['image_id'], p['caption']
imgToEval[image_id]['caption'] = caption
for i in range(len(preds)):
if preds[i]['image_id'] in imgToEval:
preds[i]['eval'] = imgToEval[preds[i]['image_id']]
# filter results to only those in MSCOCO validation set (will be about a third)
json.dump(preds, open(os.path.join('eval_results/', model_id + '_' + split + '_nofilt.json'), 'w'))
with open(cache_path, 'w') as outfile:
json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
return out
def eval_split(model, loader, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
lang_eval = eval_kwargs.get('language_eval', 0)
rank_eval = eval_kwargs.get('rank_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
# Make sure in the evaluation mode
model.eval()
np.random.seed(123)
loader.reset_iterator(split)
n = 0
losses = {}
loss_evals = 1e-8
predictions = [] # Save the discriminative results. Used for further html visualization.
while True:
data = loader.get_batch(split)
n = n + loader.batch_size
if data.get('labels', None) is not None:
# forward the model to get loss
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
with torch.no_grad():
loss = model(fc_feats, att_feats, att_masks, labels, masks, data)
loss = loss.item()
for k,v in model.loss().items():
if k not in losses:
losses[k] = 0
losses[k] += v
loss_evals = loss_evals + 1
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp = [data['fc_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_feats'][np.arange(loader.batch_size) * loader.seq_per_img],
data['att_masks'][np.arange(loader.batch_size) * loader.seq_per_img]]
tmp = utils.var_wrapper(tmp)
fc_feats, att_feats, att_masks = tmp
# forward the model to also get generated samples for each image
seq, _ = model.sample(fc_feats, att_feats, att_masks, opt=eval_kwargs)
sents = utils.decode_sequence(loader.get_vocab(), seq.data)
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
predictions.append(entry)
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
if verbose:
print('image %s: %s' %(entry['image_id'], entry['caption']))
# if we wrapped around the split or used up val imgs budget then bail
ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
for i in range(n - ix1):
predictions.pop()
if verbose:
print('evaluating validation preformance... %d/%d (%f)' %(ix0 - 1, ix1, loss))
if data['bounds']['wrapped']:
break
if num_images >= 0 and n >= num_images:
break
lang_stats = None
if lang_eval == 1:
lang_stats = language_eval(dataset, predictions, eval_kwargs['id'], split)
else:
lang_stats = {}
ranks = evalrank(model, loader, eval_kwargs) if rank_eval else {}
# Switch back to training mode
model.train()
losses = {k:v/loss_evals for k,v in losses.items()}
losses.update(ranks)
return losses, predictions, lang_stats
def encode_data(model, loader, eval_kwargs={}):
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
dataset = eval_kwargs.get('dataset', 'coco')
# Make sure in the evaluation mode
model.eval()
loader_seq_per_img = loader.seq_per_img
loader.seq_per_img = 5
loader.reset_iterator(split)
n = 0
img_embs = []
cap_embs = []
while True:
data = loader.get_batch(split)
n = n + loader.batch_size
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks']]
tmp = utils.var_wrapper(tmp)
fc_feats, att_feats, labels, masks = tmp
with torch.no_grad():
img_emb = model.vse.img_enc(fc_feats)
cap_emb = model.vse.txt_enc(labels, masks)
# if we wrapped around the split or used up val imgs budget then bail
ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
if n > ix1:
img_emb = img_emb[:(ix1-n)*loader.seq_per_img]
cap_emb = cap_emb[:(ix1-n)*loader.seq_per_img]
# preserve the embeddings by copying from gpu and converting to np
img_embs.append(img_emb.data.cpu().numpy().copy())
cap_embs.append(cap_emb.data.cpu().numpy().copy())
if data['bounds']['wrapped']:
break
if num_images >= 0 and n >= num_images:
break
print("%d/%d"%(n,ix1))
img_embs = np.vstack(img_embs)
cap_embs = np.vstack(cap_embs)
assert img_embs.shape[0] == ix1 * loader.seq_per_img
loader.seq_per_img = loader_seq_per_img
return img_embs, cap_embs
def evalrank(model, loader, eval_kwargs={}):
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
dataset = eval_kwargs.get('dataset', 'coco')
fold5 = eval_kwargs.get('fold5', 0)
"""
Evaluate a trained model on either dev or test. If `fold5=True`, 5 fold
cross-validation is done (only for MSCOCO). Otherwise, the full data is
used for evaluation.
"""
print('Computing results...')
img_embs, cap_embs = encode_data(model, loader, eval_kwargs)
print('Images: %d, Captions: %d' %
(img_embs.shape[0] / 5, cap_embs.shape[0]))
if not fold5:
# no cross-validation, full evaluation
r, rt = i2t(img_embs, cap_embs, measure='cosine', return_ranks=True)
ri, rti = t2i(img_embs, cap_embs,
measure='cosine', return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print("rsum: %.1f" % rsum)
print("Average i2t Recall: %.1f" % ar)
print("Image to text: %.1f %.1f %.1f %.1f %.1f" % r)
print("Average t2i Recall: %.1f" % ari)
print("Text to image: %.1f %.1f %.1f %.1f %.1f" % ri)
else:
# 5fold cross-validation, only for MSCOCO
results = []
for i in range(5):
r, rt0 = i2t(img_embs[i * 5000:(i + 1) * 5000],
cap_embs[i * 5000:(i + 1) *
5000], measure='cosine',
return_ranks=True)
print("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" % r)
ri, rti0 = t2i(img_embs[i * 5000:(i + 1) * 5000],
cap_embs[i * 5000:(i + 1) *
5000], measure='cosine',
return_ranks=True)
if i == 0:
rt, rti = rt0, rti0
print("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" % ri)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print("rsum: %.1f ar: %.1f ari: %.1f" % (rsum, ar, ari))
results += [list(r) + list(ri) + [ar, ari, rsum]]
print("-----------------------------------")
print("Mean metrics: ")
mean_metrics = tuple(np.array(results).mean(axis=0).flatten())
print("rsum: %.1f" % (mean_metrics[10] * 6))
print("Average i2t Recall: %.1f" % mean_metrics[11])
print("Image to text: %.1f %.1f %.1f %.1f %.1f" %
mean_metrics[:5])
print("Average t2i Recall: %.1f" % mean_metrics[12])
print("Text to image: %.1f %.1f %.1f %.1f %.1f" %
mean_metrics[5:10])
return {'rsum':rsum, 'i2t_ar':ar, 't2i_ar':ari,
'i2t_r1':r[0], 'i2t_r5':r[1], 'i2t_r10':r[2], 'i2t_medr':r[3], 'i2t_meanr':r[4],
't2i_r1':ri[0], 't2i_r5':ri[1], 't2i_r10':ri[2], 't2i_medr':ri[3], 't2i_meanr':ri[4]}#{'rt': rt, 'rti': rti}
def i2t(images, captions, npts=None, measure='cosine', return_ranks=False):
"""
Images->Text (Image Annotation)
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts is None:
npts = images.shape[0] // 5
index_list = []
ranks = np.zeros(npts)
top1 = np.zeros(npts)
for index in range(npts):
# Get query image
im = images[5 * index].reshape(1, images.shape[1])
# Compute scores
if measure == 'order':
bs = 100
if index % bs == 0:
mx = min(images.shape[0], 5 * (index + bs))
im2 = images[5 * index:mx:5]
d2 = order_sim(torch.Tensor(im2).cuda(),
torch.Tensor(captions).cuda())
d2 = d2.cpu().numpy()
d = d2[index % bs]
else:
d = np.dot(im, captions.T).flatten()
inds = np.argsort(d)[::-1]
index_list.append(inds[0])
# Score
rank = 1e20
for i in range(5 * index, 5 * index + 5, 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return (r1, r5, r10, medr, meanr)
def t2i(images, captions, npts=None, measure='cosine', return_ranks=False):
"""
Text->Images (Image Search)
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts is None:
npts = images.shape[0] // 5
ims = np.array([images[i] for i in range(0, len(images), 5)])
ranks = np.zeros(5 * npts)
top1 = np.zeros(5 * npts)
for index in range(npts):
# Get query captions
queries = captions[5 * index:5 * index + 5]
# Compute scores
if measure == 'order':
bs = 100
if 5 * index % bs == 0:
mx = min(captions.shape[0], 5 * index + bs)
q2 = captions[5 * index:mx]
d2 = order_sim(torch.Tensor(ims).cuda(),
torch.Tensor(q2).cuda())
d2 = d2.cpu().numpy()
d = d2[:, (5 * index) % bs:(5 * index) % bs + 5].T
else:
d = np.dot(queries, ims.T)
inds = np.zeros(d.shape)
for i in range(len(inds)):
inds[i] = np.argsort(d[i])[::-1]
ranks[5 * index + i] = np.where(inds[i] == index)[0][0]
top1[5 * index + i] = inds[i][0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return (r1, r5, r10, medr, meanr)