-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathlib.rs
2969 lines (2849 loc) · 97.8 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![warn(missing_docs)]
#![crate_name="itertools"]
#![cfg_attr(not(feature = "use_std"), no_std)]
//! Extra iterator adaptors, functions and macros.
//!
//! To extend [`Iterator`] with methods in this crate, import
//! the [`Itertools` trait](./trait.Itertools.html):
//!
//! ```
//! use itertools::Itertools;
//! ```
//!
//! Now, new methods like [`interleave`](./trait.Itertools.html#method.interleave)
//! are available on all iterators:
//!
//! ```
//! use itertools::Itertools;
//!
//! let it = (1..3).interleave(vec![-1, -2]);
//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
//! ```
//!
//! Most iterator methods are also provided as functions (with the benefit
//! that they convert parameters using [`IntoIterator`]):
//!
//! ```
//! use itertools::interleave;
//!
//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) {
//! /* loop body */
//! }
//! ```
//!
//! ## Crate Features
//!
//! - `use_std`
//! - Enabled by default.
//! - Disable to compile itertools using `#![no_std]`. This disables
//! any items that depend on collections (like `group_by`, `unique`,
//! `kmerge`, `join` and many more).
//!
//! ## Rust Version
//!
//! This version of itertools requires Rust 1.32 or later.
//!
//! [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
#![doc(html_root_url="https://docs.rs/itertools/0.8/")]
#[cfg(not(feature = "use_std"))]
extern crate core as std;
pub use either::Either;
#[cfg(feature = "use_std")]
use std::collections::HashMap;
use std::iter::{IntoIterator, once};
use std::cmp::Ordering;
use std::fmt;
#[cfg(feature = "use_std")]
use std::hash::Hash;
#[cfg(feature = "use_std")]
use std::fmt::Write;
#[cfg(feature = "use_std")]
type VecIntoIter<T> = ::std::vec::IntoIter<T>;
#[cfg(feature = "use_std")]
use std::iter::FromIterator;
#[macro_use]
mod impl_macros;
// for compatibility with no std and macros
#[doc(hidden)]
pub use std::iter as __std_iter;
/// The concrete iterator types.
pub mod structs {
pub use crate::adaptors::{
Dedup,
DedupBy,
DedupWithCount,
DedupByWithCount,
Interleave,
InterleaveShortest,
FilterMapOk,
FilterOk,
Product,
PutBack,
Batching,
MapInto,
MapOk,
Merge,
MergeBy,
TakeWhileRef,
WhileSome,
Coalesce,
TupleCombinations,
Positions,
Update,
};
#[allow(deprecated)]
pub use crate::adaptors::{MapResults, Step};
#[cfg(feature = "use_std")]
pub use crate::adaptors::MultiProduct;
#[cfg(feature = "use_std")]
pub use crate::combinations::Combinations;
#[cfg(feature = "use_std")]
pub use crate::combinations_with_replacement::CombinationsWithReplacement;
pub use crate::cons_tuples_impl::ConsTuples;
pub use crate::exactly_one_err::ExactlyOneError;
pub use crate::format::{Format, FormatWith};
#[cfg(feature = "use_std")]
pub use crate::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
pub use crate::intersperse::{Intersperse, IntersperseWith};
#[cfg(feature = "use_std")]
pub use crate::kmerge_impl::{KMerge, KMergeBy};
pub use crate::merge_join::MergeJoinBy;
#[cfg(feature = "use_std")]
pub use crate::multipeek_impl::MultiPeek;
#[cfg(feature = "use_std")]
pub use crate::peek_nth::PeekNth;
pub use crate::pad_tail::PadUsing;
pub use crate::peeking_take_while::PeekingTakeWhile;
#[cfg(feature = "use_std")]
pub use crate::permutations::Permutations;
pub use crate::process_results_impl::ProcessResults;
#[cfg(feature = "use_std")]
pub use crate::put_back_n_impl::PutBackN;
#[cfg(feature = "use_std")]
pub use crate::rciter_impl::RcIter;
pub use crate::repeatn::RepeatN;
#[allow(deprecated)]
pub use crate::sources::{RepeatCall, Unfold, Iterate};
#[cfg(feature = "use_std")]
pub use crate::tee::Tee;
pub use crate::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples};
#[cfg(feature = "use_std")]
pub use crate::unique_impl::{Unique, UniqueBy};
pub use crate::with_position::WithPosition;
pub use crate::zip_eq_impl::ZipEq;
pub use crate::zip_longest::ZipLongest;
pub use crate::ziptuple::Zip;
}
/// Traits helpful for using certain `Itertools` methods in generic contexts.
pub mod traits {
pub use crate::tuple_impl::HomogeneousTuple;
}
#[allow(deprecated)]
pub use crate::structs::*;
pub use crate::concat_impl::concat;
pub use crate::cons_tuples_impl::cons_tuples;
pub use crate::diff::diff_with;
pub use crate::diff::Diff;
#[cfg(feature = "use_std")]
pub use crate::kmerge_impl::{kmerge_by};
pub use crate::minmax::MinMaxResult;
pub use crate::peeking_take_while::PeekingNext;
pub use crate::process_results_impl::process_results;
pub use crate::repeatn::repeat_n;
#[allow(deprecated)]
pub use crate::sources::{repeat_call, unfold, iterate};
pub use crate::with_position::Position;
pub use crate::ziptuple::multizip;
mod adaptors;
mod either_or_both;
pub use crate::either_or_both::EitherOrBoth;
#[doc(hidden)]
pub mod free;
#[doc(inline)]
pub use crate::free::*;
mod concat_impl;
mod cons_tuples_impl;
#[cfg(feature = "use_std")]
mod combinations;
#[cfg(feature = "use_std")]
mod combinations_with_replacement;
mod exactly_one_err;
mod diff;
mod format;
#[cfg(feature = "use_std")]
mod group_map;
#[cfg(feature = "use_std")]
mod groupbylazy;
mod intersperse;
#[cfg(feature = "use_std")]
mod kmerge_impl;
#[cfg(feature = "use_std")]
mod lazy_buffer;
mod merge_join;
mod minmax;
#[cfg(feature = "use_std")]
mod multipeek_impl;
mod pad_tail;
#[cfg(feature = "use_std")]
mod peek_nth;
mod peeking_take_while;
#[cfg(feature = "use_std")]
mod permutations;
mod process_results_impl;
#[cfg(feature = "use_std")]
mod put_back_n_impl;
#[cfg(feature = "use_std")]
mod rciter_impl;
mod repeatn;
mod size_hint;
mod sources;
#[cfg(feature = "use_std")]
mod tee;
mod tuple_impl;
#[cfg(feature = "use_std")]
mod unique_impl;
mod with_position;
mod zip_eq_impl;
mod zip_longest;
mod ziptuple;
#[macro_export]
/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
///
/// ```
/// # use itertools::iproduct;
/// #
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
/// // ..
/// }
/// # }
/// ```
macro_rules! iproduct {
(@flatten $I:expr,) => (
$I
);
(@flatten $I:expr, $J:expr, $($K:expr,)*) => (
iproduct!(@flatten $crate::cons_tuples(iproduct!($I, $J)), $($K,)*)
);
($I:expr) => (
$crate::__std_iter::IntoIterator::into_iter($I)
);
($I:expr, $J:expr) => (
$crate::Itertools::cartesian_product(iproduct!($I), iproduct!($J))
);
($I:expr, $J:expr, $($K:expr),+) => (
iproduct!(@flatten iproduct!($I, $J), $($K,)+)
);
}
#[macro_export]
/// Create an iterator running multiple iterators in lockstep.
///
/// The `izip!` iterator yields elements until any subiterator
/// returns `None`.
///
/// This is a version of the standard ``.zip()`` that's supporting more than
/// two iterators. The iterator element type is a tuple with one element
/// from each of the input iterators. Just like ``.zip()``, the iteration stops
/// when the shortest of the inputs reaches its end.
///
/// **Note:** The result of this macro is in the general case an iterator
/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
/// The special cases of one and two arguments produce the equivalent of
/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
///
/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
/// of using the standard library `.zip()`.
///
/// [`multizip`]: fn.multizip.html
///
/// ```
/// # use itertools::izip;
/// #
/// # fn main() {
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// # }
/// ```
macro_rules! izip {
// @closure creates a tuple-flattening closure for .map() call. usage:
// @closure partial_pattern => partial_tuple , rest , of , iterators
// eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee )
( @closure $p:pat => $tup:expr ) => {
|$p| $tup
};
// The "b" identifier is a different identifier on each recursion level thanks to hygiene.
( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => {
izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*)
};
// unary
($first:expr $(,)*) => {
$crate::__std_iter::IntoIterator::into_iter($first)
};
// binary
($first:expr, $second:expr $(,)*) => {
izip!($first)
.zip($second)
};
// n-ary where n > 2
( $first:expr $( , $rest:expr )* $(,)* ) => {
izip!($first)
$(
.zip($rest)
)*
.map(
izip!(@closure a => (a) $( , $rest )*)
)
};
}
/// An [`Iterator`] blanket implementation that provides extra adaptors and
/// methods.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an iterator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [`.interleave()`](#method.interleave)
///
/// * *Regular methods* are those that don't return iterators and instead
/// return a regular value of some other kind.
/// [`.next_tuple()`](#method.next_tuple) is an example and the first regular
/// method in the list.
///
/// [`Iterator`]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
pub trait Itertools : Iterator {
// adaptors
/// Alternate elements from two iterators until both have run out.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
/// ```
fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter>
where J: IntoIterator<Item = Self::Item>,
Self: Sized
{
interleave(self, other)
}
/// Alternate elements from two iterators until at least one of them has run
/// out.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave_shortest(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
/// ```
fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter>
where J: IntoIterator<Item = Self::Item>,
Self: Sized
{
adaptors::interleave_shortest(self, other.into_iter())
}
/// An iterator adaptor to insert a particular value
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
/// ```
fn intersperse(self, element: Self::Item) -> Intersperse<Self>
where Self: Sized,
Self::Item: Clone
{
intersperse::intersperse(self, element)
}
/// An iterator adaptor to insert a particular value created by a function
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let mut i = 10;
/// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]);
/// assert_eq!(i, 8);
/// ```
fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F>
where Self: Sized,
F: FnMut() -> Self::Item
{
intersperse::intersperse_with(self, element)
}
/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of two optional elements.
///
/// This iterator is *fused*.
///
/// As long as neither input iterator is exhausted yet, it yields two values
/// via `EitherOrBoth::Both`.
///
/// When the parameter iterator is exhausted, it only yields a value from the
/// `self` iterator via `EitherOrBoth::Left`.
///
/// When the `self` iterator is exhausted, it only yields a value from the
/// parameter iterator via `EitherOrBoth::Right`.
///
/// When both iterators return `None`, all further invocations of `.next()`
/// will return `None`.
///
/// Iterator element type is
/// [`EitherOrBoth<Self::Item, J::Item>`](enum.EitherOrBoth.html).
///
/// ```rust
/// use itertools::EitherOrBoth::{Both, Right};
/// use itertools::Itertools;
/// let it = (0..1).zip_longest(1..3);
/// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
/// ```
#[inline]
fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter>
where J: IntoIterator,
Self: Sized
{
zip_longest::zip_longest(self, other.into_iter())
}
/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of elements.
///
/// **Panics** if the iterators reach an end and they are not of equal
/// lengths.
#[inline]
fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter>
where J: IntoIterator,
Self: Sized
{
zip_eq(self, other)
}
/// A “meta iterator adaptor”. Its closure receives a reference to the
/// iterator and may pick off as many elements as it likes, to produce the
/// next iterator element.
///
/// Iterator element type is `B`.
///
/// ```
/// use itertools::Itertools;
///
/// // An adaptor that gathers elements in pairs
/// let pit = (0..4).batching(|it| {
/// match it.next() {
/// None => None,
/// Some(x) => match it.next() {
/// None => None,
/// Some(y) => Some((x, y)),
/// }
/// }
/// });
///
/// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
/// ```
///
fn batching<B, F>(self, f: F) -> Batching<Self, F>
where F: FnMut(&mut Self) -> Option<B>,
Self: Sized
{
adaptors::batching(self, f)
}
/// Return an *iterable* that can group iterator elements.
/// Consecutive elements that map to the same key (“runs”), are assigned
/// to the same group.
///
/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in order, or if each group's iterator is
/// dropped without keeping it around, then `GroupBy` uses no
/// allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements `IntoIterator` (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `(K, Group)`: the group's key and the
/// group iterator.
///
/// ```
/// use itertools::Itertools;
///
/// // group data into runs of larger than zero or not.
/// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |---->|------>|--------->|
///
/// // Note: The `&` is significant here, `GroupBy` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// let mut data_grouped = Vec::new();
/// for (key, group) in &data.into_iter().group_by(|elt| *elt >= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
#[cfg(feature = "use_std")]
fn group_by<K, F>(self, key: F) -> GroupBy<K, Self, F>
where Self: Sized,
F: FnMut(&Self::Item) -> K,
K: PartialEq,
{
groupbylazy::new(self, key)
}
/// Return an *iterable* that can chunk the iterator.
///
/// Yield subiterators (chunks) that each yield a fixed number elements,
/// determined by `size`. The last chunk will be shorter if there aren't
/// enough elements.
///
/// `IntoChunks` is based on `GroupBy`: it is iterable (implements
/// `IntoIterator`, **not** `Iterator`), and it only buffers if several
/// chunk iterators are alive at the same time.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// **Panics** if `size` is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
/// //chunk size=3 |------->|-------->|--->|
///
/// // Note: The `&` is significant here, `IntoChunks` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// for chunk in &data.into_iter().chunks(3) {
/// // Check that the sum of each chunk is 4.
/// assert_eq!(4, chunk.sum());
/// }
/// ```
#[cfg(feature = "use_std")]
fn chunks(self, size: usize) -> IntoChunks<Self>
where Self: Sized,
{
assert!(size != 0);
groupbylazy::new_chunks(self, size)
}
/// Return an iterator over all contiguous windows producing tuples of
/// a specific size (up to 4).
///
/// `tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
///
/// // pairwise iteration
/// for (a, b) in (1..5).tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
///
/// let mut it = (1..5).tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).tuple_windows::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
///
/// // you can also specify the complete type
/// use itertools::TupleWindows;
/// use std::ops::Range;
///
/// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
/// ```
fn tuple_windows<T>(self) -> TupleWindows<Self, T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple,
T::Item: Clone
{
tuple_impl::tuple_windows(self)
}
/// Return an iterator over all windows, wrapping back to the first
/// elements when the window would otherwise exceed the length of the
/// iterator, producing tuples of a specific size (up to 4).
///
/// `circular_tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).circular_tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]);
///
/// let mut it = (1..5).circular_tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(Some((3, 4, 1)), it.next());
/// assert_eq!(Some((4, 1, 2)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).circular_tuple_windows::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]);
/// ```
fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T>
where Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator,
T: tuple_impl::TupleCollect + Clone,
T::Item: Clone
{
tuple_impl::circular_tuple_windows(self)
}
/// Return an iterator that groups the items in tuples of a specific size
/// (up to 4).
///
/// See also the method [`.next_tuple()`](#method.next_tuple).
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).tuples() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (3, 4)]);
///
/// let mut it = (1..7).tuples();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((4, 5, 6)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..7).tuples::<(_, _, _)>();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
///
/// // you can also specify the complete type
/// use itertools::Tuples;
/// use std::ops::Range;
///
/// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
/// ```
///
/// See also [`Tuples::into_buffer`](structs/struct.Tuples.html#method.into_buffer).
fn tuples<T>(self) -> Tuples<Self, T>
where Self: Sized + Iterator<Item = T::Item>,
T: traits::HomogeneousTuple
{
tuple_impl::tuples(self)
}
/// Split into an iterator pair that both yield all elements from
/// the original iterator.
///
/// **Note:** If the iterator is clonable, prefer using that instead
/// of using this method. It is likely to be more efficient.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
/// let xs = vec![0, 1, 2, 3];
///
/// let (mut t1, t2) = xs.into_iter().tee();
/// itertools::assert_equal(t1.next(), Some(0));
/// itertools::assert_equal(t2, 0..4);
/// itertools::assert_equal(t1, 1..4);
/// ```
#[cfg(feature = "use_std")]
fn tee(self) -> (Tee<Self>, Tee<Self>)
where Self: Sized,
Self::Item: Clone
{
tee::new(self)
}
/// Return an iterator adaptor that steps `n` elements in the base iterator
/// for each iteration.
///
/// The iterator steps by yielding the next element from the base iterator,
/// then skipping forward `n - 1` elements.
///
/// Iterator element type is `Self::Item`.
///
/// **Panics** if the step is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..8).step(3);
/// itertools::assert_equal(it, vec![0, 3, 6]);
/// ```
#[deprecated(note="Use std .step_by() instead", since="0.8")]
#[allow(deprecated)]
fn step(self, n: usize) -> Step<Self>
where Self: Sized
{
adaptors::step(self, n)
}
/// Convert each item of the iterator using the `Into` trait.
///
/// ```rust
/// use itertools::Itertools;
///
/// (1i32..42i32).map_into::<f64>().collect_vec();
/// ```
fn map_into<R>(self) -> MapInto<Self, R>
where Self: Sized,
Self::Item: Into<R>,
{
adaptors::map_into(self)
}
/// See [`.map_ok()`](#method.map_ok).
#[deprecated(note="Use .map_ok() instead", since="0.10")]
fn map_results<F, T, U, E>(self, f: F) -> MapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
{
self.map_ok(f)
}
/// Return an iterator adaptor that applies the provided closure
/// to every `Result::Ok` value. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(41), Err(false), Ok(11)];
/// let it = input.into_iter().map_ok(|i| i + 1);
/// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
/// ```
fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> U,
{
adaptors::map_ok(self, f)
}
/// Return an iterator adaptor that filters every `Result::Ok`
/// value with the provided closure. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_ok(|&i| i > 20);
/// itertools::assert_equal(it, vec![Ok(22), Err(false)]);
/// ```
fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(&T) -> bool,
{
adaptors::filter_ok(self, f)
}
/// Return an iterator adaptor that filters and transforms every
/// `Result::Ok` value with the provided closure. `Result::Err`
/// values are unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None });
/// itertools::assert_equal(it, vec![Ok(44), Err(false)]);
/// ```
fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F>
where Self: Iterator<Item = Result<T, E>> + Sized,
F: FnMut(T) -> Option<U>,
{
adaptors::filter_map_ok(self, f)
}
/// Return an iterator adaptor that merges the two base iterators in
/// ascending order. If both base iterators are sorted (ascending), the
/// result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..11).step(3);
/// let b = (0..11).step(5);
/// let it = a.merge(b);
/// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
/// ```
fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter>
where Self: Sized,
Self::Item: PartialOrd,
J: IntoIterator<Item = Self::Item>
{
merge(self, other)
}
/// Return an iterator adaptor that merges the two base iterators in order.
/// This is much like `.merge()` but allows for a custom ordering.
///
/// This can be especially useful for sequences of tuples.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..).zip("bc".chars());
/// let b = (0..).zip("ad".chars());
/// let it = a.merge_by(b, |x, y| x.1 <= y.1);
/// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]);
/// ```
fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F>
where Self: Sized,
J: IntoIterator<Item = Self::Item>,
F: FnMut(&Self::Item, &Self::Item) -> bool
{
adaptors::merge_by_new(self, other.into_iter(), is_first)
}
/// Create an iterator that merges items from both this and the specified
/// iterator in ascending order.
///
/// It chooses whether to pair elements based on the `Ordering` returned by the
/// specified compare function. At any point, inspecting the tip of the
/// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
/// `J::Item` respectively, the resulting iterator will:
///
/// - Emit `EitherOrBoth::Left(i)` when `i < j`,
/// and remove `i` from its source iterator
/// - Emit `EitherOrBoth::Right(j)` when `i > j`,
/// and remove `j` from its source iterator
/// - Emit `EitherOrBoth::Both(i, j)` when `i == j`,
/// and remove both `i` and `j` from their respective source iterators
///
/// ```
/// use itertools::Itertools;
/// use itertools::EitherOrBoth::{Left, Right, Both};
///
/// let multiples_of_2 = (0..10).step(2);
/// let multiples_of_3 = (0..10).step(3);
///
/// itertools::assert_equal(
/// multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)),
/// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)]
/// );
/// ```
#[inline]
fn merge_join_by<J, F>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F>
where J: IntoIterator,
F: FnMut(&Self::Item, &J::Item) -> std::cmp::Ordering,
Self: Sized
{
merge_join_by(self, other, cmp_fn)
}
/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them in ascending order.
///
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..6).step(3);
/// let b = (1..6).step(3);
/// let c = (2..6).step(3);
/// let it = vec![a, b, c].into_iter().kmerge();
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
/// ```
#[cfg(feature = "use_std")]
fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter>
where Self: Sized,
Self::Item: IntoIterator,
<Self::Item as IntoIterator>::Item: PartialOrd,
{
kmerge(self)
}
/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them according to the given closure.
///
/// The closure `first` is called with two elements *a*, *b* and should
/// return `true` if *a* is ordered before *b*.
///
/// If all base iterators are sorted according to `first`, the result is
/// sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = vec![-1f64, 2., 3., -5., 6., -7.];
/// let b = vec![0., 2., -4.];
/// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs());
/// assert_eq!(it.next(), Some(0.));
/// assert_eq!(it.last(), Some(-7.));
/// ```
#[cfg(feature = "use_std")]
fn kmerge_by<F>(self, first: F)
-> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
where Self: Sized,
Self::Item: IntoIterator,
F: FnMut(&<Self::Item as IntoIterator>::Item,
&<Self::Item as IntoIterator>::Item) -> bool
{
kmerge_by(self, first)
}
/// Return an iterator adaptor that iterates over the cartesian product of
/// the element sets of two iterators `self` and `J`.
///
/// Iterator element type is `(Self::Item, J::Item)`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..2).cartesian_product("αβ".chars());
/// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]);
/// ```
fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter>
where Self: Sized,
Self::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone
{
adaptors::cartesian_product(self, other.into_iter())
}
/// Return an iterator adaptor that iterates over the cartesian product of
/// all subiterators returned by meta-iterator `self`.
///
/// All provided iterators must yield the same `Item` type. To generate
/// the product of iterators yielding multiple types, use the
/// [`iproduct`](macro.iproduct.html) macro instead.
///
///
/// The iterator element type is `Vec<T>`, where `T` is the iterator element
/// of the subiterators.
///
/// ```
/// use itertools::Itertools;
/// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
/// .multi_cartesian_product();
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
/// assert_eq!(multi_prod.next(), None);
/// ```
#[cfg(feature = "use_std")]
fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>