-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmincostflow.rs
218 lines (191 loc) · 5.88 KB
/
mincostflow.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
use crate::internal_type_traits::Integral;
pub struct MinCostFlowEdge<T> {
pub from: usize,
pub to: usize,
pub cap: T,
pub flow: T,
pub cost: T,
}
pub struct MinCostFlowGraph<T> {
pos: Vec<(usize, usize)>,
g: Vec<Vec<_Edge<T>>>,
}
impl<T> MinCostFlowGraph<T>
where
T: Integral + std::ops::Neg<Output = T>,
{
pub fn new(n: usize) -> Self {
Self {
pos: vec![],
g: (0..n).map(|_| vec![]).collect(),
}
}
pub fn get_edge(&self, i: usize) -> MinCostFlowEdge<T> {
assert!(i < self.pos.len());
let e = &self.g[self.pos[i].0][self.pos[i].1];
let re = &self.g[e.to][e.rev];
MinCostFlowEdge {
from: self.pos[i].0,
to: e.to,
cap: e.cap + re.cap,
flow: re.cap,
cost: e.cost,
}
}
pub fn edges(&self) -> Vec<MinCostFlowEdge<T>> {
let m = self.pos.len();
let mut result = vec![];
for i in 0..m {
result.push(self.get_edge(i));
}
result
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: T, cost: T) -> usize {
assert!(from < self.g.len());
assert!(to < self.g.len());
assert_ne!(from, to);
assert!(cap >= T::zero());
assert!(cost >= T::zero());
self.pos.push((from, self.g[from].len()));
let rev = self.g[to].len();
self.g[from].push(_Edge { to, rev, cap, cost });
let rev = self.g[from].len() - 1;
self.g[to].push(_Edge {
to: from,
rev,
cap: T::zero(),
cost: -cost,
});
self.pos.len() - 1
}
/// Returns (maximum flow, cost)
pub fn flow(&mut self, source: usize, sink: usize, flow_limit: T) -> (T, T) {
self.slope(source, sink, flow_limit).pop().unwrap()
}
pub fn slope(&mut self, source: usize, sink: usize, flow_limit: T) -> Vec<(T, T)> {
let n = self.g.len();
assert!(source < n);
assert!(sink < n);
assert_ne!(source, sink);
let mut dual = vec![T::zero(); n];
let mut prev_v = vec![0; n];
let mut prev_e = vec![0; n];
let mut flow = T::zero();
let mut cost = T::zero();
let mut prev_cost_per_flow: Option<T> = None;
let mut result = vec![(flow, cost)];
while flow < flow_limit {
if !self.refine_dual(source, sink, &mut dual, &mut prev_v, &mut prev_e) {
break;
}
let mut c = flow_limit - flow;
let mut v = sink;
while v != source {
c = std::cmp::min(c, self.g[prev_v[v]][prev_e[v]].cap);
v = prev_v[v];
}
let mut v = sink;
while v != source {
self.g[prev_v[v]][prev_e[v]].cap -= c;
let rev = self.g[prev_v[v]][prev_e[v]].rev;
self.g[v][rev].cap += c;
v = prev_v[v];
}
let d = -dual[source];
flow += c;
cost += d * c;
if prev_cost_per_flow == Some(d) {
assert!(result.pop().is_some());
}
result.push((flow, cost));
prev_cost_per_flow = Some(d);
}
result
}
fn refine_dual(
&self,
source: usize,
sink: usize,
dual: &mut [T],
pv: &mut [usize],
pe: &mut [usize],
) -> bool {
let n = self.g.len();
let mut dist = vec![T::max_value(); n];
let mut vis = vec![false; n];
let mut que = std::collections::BinaryHeap::new();
dist[source] = T::zero();
que.push((std::cmp::Reverse(T::zero()), source));
while let Some((_, v)) = que.pop() {
if vis[v] {
continue;
}
vis[v] = true;
if v == sink {
break;
}
for (i, e) in self.g[v].iter().enumerate() {
if vis[e.to] || e.cap == T::zero() {
continue;
}
let cost = e.cost - dual[e.to] + dual[v];
if dist[e.to] - dist[v] > cost {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push((std::cmp::Reverse(dist[e.to]), e.to));
}
}
}
if !vis[sink] {
return false;
}
for v in 0..n {
if !vis[v] {
continue;
}
dual[v] -= dist[sink] - dist[v];
}
true
}
}
struct _Edge<T> {
to: usize,
rev: usize,
cap: T,
cost: T,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_min_cost_flow() {
let mut graph = MinCostFlowGraph::new(4);
graph.add_edge(0, 1, 2, 1);
graph.add_edge(0, 2, 1, 2);
graph.add_edge(1, 2, 1, 1);
graph.add_edge(1, 3, 1, 3);
graph.add_edge(2, 3, 2, 1);
let (flow, cost) = graph.flow(0, 3, 2);
assert_eq!(flow, 2);
assert_eq!(cost, 6);
}
#[test]
fn same_cost_paths() {
// https://github.com/atcoder/ac-library/blob/300e66a7d73efe27d02f38133239711148092030/test/unittest/mincostflow_test.cpp#L83-L90
let mut graph = MinCostFlowGraph::new(3);
assert_eq!(0, graph.add_edge(0, 1, 1, 1));
assert_eq!(1, graph.add_edge(1, 2, 1, 0));
assert_eq!(2, graph.add_edge(0, 2, 2, 1));
let expected = [(0, 0), (3, 3)];
assert_eq!(expected[..], *graph.slope(0, 2, i32::max_value()));
}
#[test]
fn only_one_nonzero_cost_edge() {
let mut graph = MinCostFlowGraph::new(3);
assert_eq!(0, graph.add_edge(0, 1, 1, 1));
assert_eq!(1, graph.add_edge(1, 2, 1, 0));
let expected = [(0, 0), (1, 1)];
assert_eq!(expected[..], *graph.slope(0, 2, i32::max_value()));
}
}