-
Notifications
You must be signed in to change notification settings - Fork 356
/
Copy pathhelpers.rs
520 lines (475 loc) · 21.4 KB
/
helpers.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
use std::ffi::OsStr;
use std::{iter, mem};
use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
use rustc::mir;
use rustc::ty::{
self,
layout::{self, LayoutOf, Size, TyLayout},
List, TyCtxt,
};
use syntax::source_map::DUMMY_SP;
use rand::RngCore;
use crate::*;
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
/// Gets an instance for a path.
fn resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> InterpResult<'tcx, DefId> {
tcx.crates()
.iter()
.find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0])
.and_then(|krate| {
let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
let mut items = tcx.item_children(krate);
let mut path_it = path.iter().skip(1).peekable();
while let Some(segment) = path_it.next() {
for item in mem::replace(&mut items, Default::default()).iter() {
if item.ident.name.as_str() == *segment {
if path_it.peek().is_none() {
return Some(item.res.def_id());
}
items = tcx.item_children(item.res.def_id());
break;
}
}
}
None
})
.ok_or_else(|| {
let path = path.iter().map(|&s| s.to_owned()).collect();
err_unsup!(PathNotFound(path)).into()
})
}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Gets an instance for a path.
fn resolve_path(&self, path: &[&str]) -> InterpResult<'tcx, ty::Instance<'tcx>> {
Ok(ty::Instance::mono(
self.eval_context_ref().tcx.tcx,
resolve_did(self.eval_context_ref().tcx.tcx, path)?,
))
}
/// Write a 0 of the appropriate size to `dest`.
fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
}
/// Test if this immediate equals 0.
fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
let this = self.eval_context_ref();
let null = Scalar::from_int(0, this.memory.pointer_size());
this.ptr_eq(val, null)
}
/// Turn a Scalar into an Option<NonNullScalar>
fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
let this = self.eval_context_ref();
Ok(if this.is_null(val)? { None } else { Some(val) })
}
/// Get the `Place` for a local
fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
let this = self.eval_context_mut();
let place = mir::Place { base: mir::PlaceBase::Local(local), projection: List::empty() };
this.eval_place(&place)
}
/// Generate some random bytes, and write them to `dest`.
fn gen_random(&mut self, ptr: Scalar<Tag>, len: usize) -> InterpResult<'tcx> {
// Some programs pass in a null pointer and a length of 0
// to their platform's random-generation function (e.g. getrandom())
// on Linux. For compatibility with these programs, we don't perform
// any additional checks - it's okay if the pointer is invalid,
// since we wouldn't actually be writing to it.
if len == 0 {
return Ok(());
}
let this = self.eval_context_mut();
let mut data = vec![0; len];
if this.machine.communicate {
// Fill the buffer using the host's rng.
getrandom::getrandom(&mut data)
.map_err(|err| err_unsup_format!("getrandom failed: {}", err))?;
} else {
let rng = this.memory.extra.rng.get_mut();
rng.fill_bytes(&mut data);
}
this.memory.write_bytes(ptr, data.iter().copied())
}
/// Call a function: Push the stack frame and pass the arguments.
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
fn call_function(
&mut self,
f: ty::Instance<'tcx>,
args: &[Immediate<Tag>],
dest: Option<PlaceTy<'tcx, Tag>>,
stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Push frame.
let mir = &*this.load_mir(f.def, None)?;
let span = this
.stack()
.last()
.and_then(Frame::current_source_info)
.map(|si| si.span)
.unwrap_or(DUMMY_SP);
this.push_stack_frame(f, span, mir, dest, stack_pop)?;
// Initialize arguments.
let mut callee_args = this.frame().body.args_iter();
for arg in args {
let callee_arg = this.local_place(
callee_args.next().expect("callee has fewer arguments than expected"),
)?;
this.write_immediate(*arg, callee_arg)?;
}
callee_args.next().expect_none("callee has more arguments than expected");
Ok(())
}
/// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
/// will be true if this is frozen, false if this is in an `UnsafeCell`.
fn visit_freeze_sensitive(
&self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
debug_assert_eq!(
size,
this.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size)
);
// Store how far we proceeded into the place so far. Everything to the left of
// this offset has already been handled, in the sense that the frozen parts
// have had `action` called on them.
let mut end_ptr = place.ptr.assert_ptr();
// Called when we detected an `UnsafeCell` at the given offset and size.
// Calls `action` and advances `end_ptr`.
let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar<Tag>, unsafe_cell_size: Size| {
let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr();
debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id);
debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag);
// We assume that we are given the fields in increasing offset order,
// and nothing else changes.
let unsafe_cell_offset = unsafe_cell_ptr.offset;
let end_offset = end_ptr.offset;
assert!(unsafe_cell_offset >= end_offset);
let frozen_size = unsafe_cell_offset - end_offset;
// Everything between the end_ptr and this `UnsafeCell` is frozen.
if frozen_size != Size::ZERO {
action(end_ptr, frozen_size, /*frozen*/ true)?;
}
// This `UnsafeCell` is NOT frozen.
if unsafe_cell_size != Size::ZERO {
action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
}
// Update end end_ptr.
end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
// Done
Ok(())
};
// Run a visitor
{
let mut visitor = UnsafeCellVisitor {
ecx: this,
unsafe_cell_action: |place| {
trace!("unsafe_cell_action on {:?}", place.ptr);
// We need a size to go on.
let unsafe_cell_size = this
.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
// for extern types, just cover what we can
.unwrap_or_else(|| place.layout.size);
// Now handle this `UnsafeCell`, unless it is empty.
if unsafe_cell_size != Size::ZERO {
unsafe_cell_action(place.ptr, unsafe_cell_size)
} else {
Ok(())
}
},
};
visitor.visit_value(place)?;
}
// The part between the end_ptr and the end of the place is also frozen.
// So pretend there is a 0-sized `UnsafeCell` at the end.
unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?;
// Done!
return Ok(());
/// Visiting the memory covered by a `MemPlace`, being aware of
/// whether we are inside an `UnsafeCell` or not.
struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
unsafe_cell_action: F,
}
impl<'ecx, 'mir, 'tcx, F> ValueVisitor<'mir, 'tcx, Evaluator<'tcx>>
for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
type V = MPlaceTy<'tcx, Tag>;
#[inline(always)]
fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
&self.ecx
}
// Hook to detect `UnsafeCell`.
fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
let is_unsafe_cell = match v.layout.ty.kind {
ty::Adt(adt, _) =>
Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
_ => false,
};
if is_unsafe_cell {
// We do not have to recurse further, this is an `UnsafeCell`.
(self.unsafe_cell_action)(v)
} else if self.ecx.type_is_freeze(v.layout.ty) {
// This is `Freeze`, there cannot be an `UnsafeCell`
Ok(())
} else {
// We want to not actually read from memory for this visit. So, before
// walking this value, we have to make sure it is not a
// `Variants::Multiple`.
match v.layout.variants {
layout::Variants::Multiple { .. } => {
// A multi-variant enum, or generator, or so.
// Treat this like a union: without reading from memory,
// we cannot determine the variant we are in. Reading from
// memory would be subject to Stacked Borrows rules, leading
// to all sorts of "funny" recursion.
// We only end up here if the type is *not* freeze, so we just call the
// `UnsafeCell` action.
(self.unsafe_cell_action)(v)
}
layout::Variants::Single { .. } => {
// Proceed further, try to find where exactly that `UnsafeCell`
// is hiding.
self.walk_value(v)
}
}
}
}
// Make sure we visit aggregrates in increasing offset order.
fn visit_aggregate(
&mut self,
place: MPlaceTy<'tcx, Tag>,
fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
) -> InterpResult<'tcx> {
match place.layout.fields {
layout::FieldPlacement::Array { .. } => {
// For the array layout, we know the iterator will yield sorted elements so
// we can avoid the allocation.
self.walk_aggregate(place, fields)
}
layout::FieldPlacement::Arbitrary { .. } => {
// Gather the subplaces and sort them before visiting.
let mut places =
fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
places.sort_by_key(|place| place.ptr.assert_ptr().offset);
self.walk_aggregate(place, places.into_iter().map(Ok))
}
layout::FieldPlacement::Union { .. } => {
// Uh, what?
bug!("a union is not an aggregate we should ever visit")
}
}
}
// We have to do *something* for unions.
fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
// With unions, we fall back to whatever the type says, to hopefully be consistent
// with LLVM IR.
// FIXME: are we consistent, and is this really the behavior we want?
let frozen = self.ecx.type_is_freeze(v.layout.ty);
if frozen { Ok(()) } else { (self.unsafe_cell_action)(v) }
}
// We should never get to a primitive, but always short-circuit somewhere above.
fn visit_primitive(&mut self, _v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
bug!("we should always short-circuit before coming to a primitive")
}
}
}
/// Helper function to get a `libc` constant as a `Scalar`.
fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
self.eval_context_mut()
.eval_path_scalar(&["libc", name])?
.ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name))?
.not_undef()
}
/// Helper function to get a `libc` constant as an `i32`.
fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
self.eval_libc(name)?.to_i32()
}
/// Helper function to get the `TyLayout` of a `libc` type
fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> {
let this = self.eval_context_mut();
let ty = this.resolve_path(&["libc", name])?.ty(*this.tcx);
this.layout_of(ty)
}
// Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack
// different values into a struct.
fn write_packed_immediates(
&mut self,
place: &MPlaceTy<'tcx, Tag>,
imms: &[ImmTy<'tcx, Tag>],
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let mut offset = Size::from_bytes(0);
for &imm in imms {
this.write_immediate_to_mplace(
*imm,
place.offset(offset, None, imm.layout, &*this.tcx)?,
)?;
offset += imm.layout.size;
}
Ok(())
}
/// Helper function used inside the shims of foreign functions to check that isolation is
/// disabled. It returns an error using the `name` of the foreign function if this is not the
/// case.
fn check_no_isolation(&mut self, name: &str) -> InterpResult<'tcx> {
if !self.eval_context_mut().machine.communicate {
throw_unsup_format!(
"`{}` not available when isolation is enabled. Pass the flag `-Zmiri-disable-isolation` to disable it.",
name
)
}
Ok(())
}
/// Sets the last error variable.
fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let errno_place = this.machine.last_error.unwrap();
this.write_scalar(scalar, errno_place.into())
}
/// Gets the last error variable.
fn get_last_error(&mut self) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
let errno_place = this.machine.last_error.unwrap();
this.read_scalar(errno_place.into())?.not_undef()
}
/// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
/// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error.
fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
use std::io::ErrorKind::*;
let this = self.eval_context_mut();
let target = &this.tcx.tcx.sess.target.target;
let last_error = if target.options.target_family == Some("unix".to_owned()) {
this.eval_libc(match e.kind() {
ConnectionRefused => "ECONNREFUSED",
ConnectionReset => "ECONNRESET",
PermissionDenied => "EPERM",
BrokenPipe => "EPIPE",
NotConnected => "ENOTCONN",
ConnectionAborted => "ECONNABORTED",
AddrNotAvailable => "EADDRNOTAVAIL",
AddrInUse => "EADDRINUSE",
NotFound => "ENOENT",
Interrupted => "EINTR",
InvalidInput => "EINVAL",
TimedOut => "ETIMEDOUT",
AlreadyExists => "EEXIST",
WouldBlock => "EWOULDBLOCK",
_ => {
throw_unsup_format!("The {} error cannot be transformed into a raw os error", e)
}
})?
} else {
// FIXME: we have to implement the Windows equivalent of this.
throw_unsup_format!(
"Setting the last OS error from an io::Error is unsupported for {}.",
target.target_os
)
};
this.set_last_error(last_error)
}
/// Helper function that consumes an `std::io::Result<T>` and returns an
/// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns
/// `Ok(-1)` and sets the last OS error accordingly.
///
/// This function uses `T: From<i32>` instead of `i32` directly because some IO related
/// functions return different integer types (like `read`, that returns an `i64`).
fn try_unwrap_io_result<T: From<i32>>(
&mut self,
result: std::io::Result<T>,
) -> InterpResult<'tcx, T> {
match result {
Ok(ok) => Ok(ok),
Err(e) => {
self.eval_context_mut().set_last_error_from_io_error(e)?;
Ok((-1).into())
}
}
}
/// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle.
fn read_os_str_from_c_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, &'a OsStr>
where
'tcx: 'a,
'mir: 'a,
{
#[cfg(target_os = "unix")]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
Ok(std::os::unix::ffi::OsStringExt::from_bytes(bytes))
}
#[cfg(not(target_os = "unix"))]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
let s = std::str::from_utf8(bytes)
.map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
Ok(&OsStr::new(s))
}
let this = self.eval_context_ref();
let bytes = this.memory.read_c_str(scalar)?;
bytes_to_os_str(bytes)
}
/// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle. This function returns `Ok(false)` without trying to write if
/// `size` is not large enough to fit the contents of `os_string` plus a null terminator. It
/// returns `Ok(true)` if the writing process was successful.
fn write_os_str_to_c_str(
&mut self,
os_str: &OsStr,
scalar: Scalar<Tag>,
size: u64,
) -> InterpResult<'tcx, bool> {
#[cfg(target_os = "unix")]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
std::os::unix::ffi::OsStringExt::into_bytes(os_str)
}
#[cfg(not(target_os = "unix"))]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
// On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the
// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
// valid.
os_str
.to_str()
.map(|s| s.as_bytes())
.ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
}
let bytes = os_str_to_bytes(os_str)?;
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
// terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
if size <= bytes.len() as u64 {
return Ok(false);
}
self.eval_context_mut()
.memory
.write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?;
Ok(true)
}
}
pub fn immty_from_int_checked<'tcx>(
int: impl Into<i128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
Ok(ImmTy::try_from_int(int, layout).ok_or_else(||
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
)?)
}
pub fn immty_from_uint_checked<'tcx>(
int: impl Into<u128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
Ok(ImmTy::try_from_uint(int, layout).ok_or_else(||
err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits())
)?)
}