-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathexec.rs
1467 lines (1371 loc) · 49.7 KB
/
exec.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell::RefCell;
use std::collections::HashMap;
use std::sync::Arc;
use aho_corasick::{AhoCorasick, AhoCorasickBuilder, MatchKind};
use thread_local::CachedThreadLocal;
use syntax::ParserBuilder;
use syntax::hir::Hir;
use syntax::hir::literal::Literals;
use backtrack;
use compile::Compiler;
use dfa;
use error::Error;
use input::{ByteInput, CharInput};
use literal::LiteralSearcher;
use pikevm;
use prog::Program;
use re_builder::RegexOptions;
use re_bytes;
use re_set;
use re_trait::{RegularExpression, Slot, Locations};
use re_unicode;
use utf8::next_utf8;
/// `Exec` manages the execution of a regular expression.
///
/// In particular, this manages the various compiled forms of a single regular
/// expression and the choice of which matching engine to use to execute a
/// regular expression.
pub struct Exec {
/// All read only state.
ro: Arc<ExecReadOnly>,
/// Caches for the various matching engines.
cache: CachedThreadLocal<ProgramCache>,
}
/// `ExecNoSync` is like `Exec`, except it embeds a reference to a cache. This
/// means it is no longer Sync, but we can now avoid the overhead of
/// synchronization to fetch the cache.
#[derive(Debug)]
pub struct ExecNoSync<'c> {
/// All read only state.
ro: &'c Arc<ExecReadOnly>,
/// Caches for the various matching engines.
cache: &'c ProgramCache,
}
/// `ExecNoSyncStr` is like `ExecNoSync`, but matches on &str instead of &[u8].
pub struct ExecNoSyncStr<'c>(ExecNoSync<'c>);
/// `ExecReadOnly` comprises all read only state for a regex. Namely, all such
/// state is determined at compile time and never changes during search.
#[derive(Debug)]
struct ExecReadOnly {
/// The original regular expressions given by the caller to compile.
res: Vec<String>,
/// A compiled program that is used in the NFA simulation and backtracking.
/// It can be byte-based or Unicode codepoint based.
///
/// N.B. It is not possibly to make this byte-based from the public API.
/// It is only used for testing byte based programs in the NFA simulations.
nfa: Program,
/// A compiled byte based program for DFA execution. This is only used
/// if a DFA can be executed. (Currently, only word boundary assertions are
/// not supported.) Note that this program contains an embedded `.*?`
/// preceding the first capture group, unless the regex is anchored at the
/// beginning.
dfa: Program,
/// The same as above, except the program is reversed (and there is no
/// preceding `.*?`). This is used by the DFA to find the starting location
/// of matches.
dfa_reverse: Program,
/// A set of suffix literals extracted from the regex.
///
/// Prefix literals are stored on the `Program`, since they are used inside
/// the matching engines.
suffixes: LiteralSearcher,
/// An Aho-Corasick automaton with leftmost-first match semantics.
///
/// This is only set when the entire regex is a simple unanchored
/// alternation of literals. We could probably use it more circumstances,
/// but this is already hacky enough in this architecture.
///
/// N.B. We use u32 as a state ID representation under the assumption that
/// if we were to exhaust the ID space, we probably would have long
/// surpassed the compilation size limit.
ac: Option<AhoCorasick<u32>>,
/// match_type encodes as much upfront knowledge about how we're going to
/// execute a search as possible.
match_type: MatchType,
}
/// Facilitates the construction of an executor by exposing various knobs
/// to control how a regex is executed and what kinds of resources it's
/// permitted to use.
pub struct ExecBuilder {
options: RegexOptions,
match_type: Option<MatchType>,
bytes: bool,
only_utf8: bool,
}
/// Parsed represents a set of parsed regular expressions and their detected
/// literals.
struct Parsed {
exprs: Vec<Hir>,
prefixes: Literals,
suffixes: Literals,
bytes: bool,
}
impl ExecBuilder {
/// Create a regex execution builder.
///
/// This uses default settings for everything except the regex itself,
/// which must be provided. Further knobs can be set by calling methods,
/// and then finally, `build` to actually create the executor.
pub fn new(re: &str) -> Self {
Self::new_many(&[re])
}
/// Like new, but compiles the union of the given regular expressions.
///
/// Note that when compiling 2 or more regular expressions, capture groups
/// are completely unsupported. (This means both `find` and `captures`
/// wont work.)
pub fn new_many<I, S>(res: I) -> Self
where S: AsRef<str>, I: IntoIterator<Item=S> {
let mut opts = RegexOptions::default();
opts.pats = res.into_iter().map(|s| s.as_ref().to_owned()).collect();
Self::new_options(opts)
}
/// Create a regex execution builder.
pub fn new_options(opts: RegexOptions) -> Self {
ExecBuilder {
options: opts,
match_type: None,
bytes: false,
only_utf8: true,
}
}
/// Set the matching engine to be automatically determined.
///
/// This is the default state and will apply whatever optimizations are
/// possible, such as running a DFA.
///
/// This overrides whatever was previously set via the `nfa` or
/// `bounded_backtracking` methods.
pub fn automatic(mut self) -> Self {
self.match_type = None;
self
}
/// Sets the matching engine to use the NFA algorithm no matter what
/// optimizations are possible.
///
/// This overrides whatever was previously set via the `automatic` or
/// `bounded_backtracking` methods.
pub fn nfa(mut self) -> Self {
self.match_type = Some(MatchType::Nfa(MatchNfaType::PikeVM));
self
}
/// Sets the matching engine to use a bounded backtracking engine no
/// matter what optimizations are possible.
///
/// One must use this with care, since the bounded backtracking engine
/// uses memory proportion to `len(regex) * len(text)`.
///
/// This overrides whatever was previously set via the `automatic` or
/// `nfa` methods.
pub fn bounded_backtracking(mut self) -> Self {
self.match_type = Some(MatchType::Nfa(MatchNfaType::Backtrack));
self
}
/// Compiles byte based programs for use with the NFA matching engines.
///
/// By default, the NFA engines match on Unicode scalar values. They can
/// be made to use byte based programs instead. In general, the byte based
/// programs are slower because of a less efficient encoding of character
/// classes.
///
/// Note that this does not impact DFA matching engines, which always
/// execute on bytes.
pub fn bytes(mut self, yes: bool) -> Self {
self.bytes = yes;
self
}
/// When disabled, the program compiled may match arbitrary bytes.
///
/// When enabled (the default), all compiled programs exclusively match
/// valid UTF-8 bytes.
pub fn only_utf8(mut self, yes: bool) -> Self {
self.only_utf8 = yes;
self
}
/// Set the Unicode flag.
pub fn unicode(mut self, yes: bool) -> Self {
self.options.unicode = yes;
self
}
/// Parse the current set of patterns into their AST and extract literals.
fn parse(&self) -> Result<Parsed, Error> {
let mut exprs = Vec::with_capacity(self.options.pats.len());
let mut prefixes = Some(Literals::empty());
let mut suffixes = Some(Literals::empty());
let mut bytes = false;
let is_set = self.options.pats.len() > 1;
// If we're compiling a regex set and that set has any anchored
// expressions, then disable all literal optimizations.
for pat in &self.options.pats {
let mut parser =
ParserBuilder::new()
.octal(self.options.octal)
.case_insensitive(self.options.case_insensitive)
.multi_line(self.options.multi_line)
.dot_matches_new_line(self.options.dot_matches_new_line)
.swap_greed(self.options.swap_greed)
.ignore_whitespace(self.options.ignore_whitespace)
.unicode(self.options.unicode)
.allow_invalid_utf8(!self.only_utf8)
.nest_limit(self.options.nest_limit)
.build();
let expr = parser
.parse(pat)
.map_err(|e| Error::Syntax(e.to_string()))?;
bytes = bytes || !expr.is_always_utf8();
if !expr.is_anchored_start() && expr.is_any_anchored_start() {
// Partial anchors unfortunately make it hard to use prefixes,
// so disable them.
prefixes = None;
} else if is_set && expr.is_anchored_start() {
// Regex sets with anchors do not go well with literal
// optimizations.
prefixes = None;
}
prefixes = prefixes.and_then(|mut prefixes| {
if !prefixes.union_prefixes(&expr) {
None
} else {
Some(prefixes)
}
});
if !expr.is_anchored_end() && expr.is_any_anchored_end() {
// Partial anchors unfortunately make it hard to use suffixes,
// so disable them.
suffixes = None;
} else if is_set && expr.is_anchored_end() {
// Regex sets with anchors do not go well with literal
// optimizations.
suffixes = None;
}
suffixes = suffixes.and_then(|mut suffixes| {
if !suffixes.union_suffixes(&expr) {
None
} else {
Some(suffixes)
}
});
exprs.push(expr);
}
Ok(Parsed {
exprs: exprs,
prefixes: prefixes.unwrap_or_else(Literals::empty),
suffixes: suffixes.unwrap_or_else(Literals::empty),
bytes: bytes,
})
}
/// Build an executor that can run a regular expression.
pub fn build(self) -> Result<Exec, Error> {
// Special case when we have no patterns to compile.
// This can happen when compiling a regex set.
if self.options.pats.is_empty() {
let ro = Arc::new(ExecReadOnly {
res: vec![],
nfa: Program::new(),
dfa: Program::new(),
dfa_reverse: Program::new(),
suffixes: LiteralSearcher::empty(),
ac: None,
match_type: MatchType::Nothing,
});
return Ok(Exec { ro: ro, cache: CachedThreadLocal::new() });
}
let parsed = self.parse()?;
let mut nfa =
Compiler::new()
.size_limit(self.options.size_limit)
.bytes(self.bytes || parsed.bytes)
.only_utf8(self.only_utf8)
.compile(&parsed.exprs)?;
let mut dfa =
Compiler::new()
.size_limit(self.options.size_limit)
.dfa(true)
.only_utf8(self.only_utf8)
.compile(&parsed.exprs)?;
let mut dfa_reverse =
Compiler::new()
.size_limit(self.options.size_limit)
.dfa(true)
.only_utf8(self.only_utf8)
.reverse(true)
.compile(&parsed.exprs)?;
let prefixes = parsed.prefixes.unambiguous_prefixes();
let suffixes = parsed.suffixes.unambiguous_suffixes();
nfa.prefixes = LiteralSearcher::prefixes(prefixes);
dfa.prefixes = nfa.prefixes.clone();
dfa.dfa_size_limit = self.options.dfa_size_limit;
dfa_reverse.dfa_size_limit = self.options.dfa_size_limit;
let mut ac = None;
if parsed.exprs.len() == 1 {
if let Some(lits) = alternation_literals(&parsed.exprs[0]) {
// If we have a small number of literals, then let Teddy
// handle things (see literal/mod.rs).
if lits.len() > 32 {
let fsm = AhoCorasickBuilder::new()
.match_kind(MatchKind::LeftmostFirst)
.auto_configure(&lits)
// We always want this to reduce size, regardless of
// what auto-configure does.
.byte_classes(true)
.build_with_size::<u32, _, _>(&lits)
.expect("AC automaton too big");
ac = Some(fsm);
}
}
}
let mut ro = ExecReadOnly {
res: self.options.pats,
nfa: nfa,
dfa: dfa,
dfa_reverse: dfa_reverse,
suffixes: LiteralSearcher::suffixes(suffixes),
ac: ac,
match_type: MatchType::Nothing,
};
ro.match_type = ro.choose_match_type(self.match_type);
let ro = Arc::new(ro);
Ok(Exec { ro: ro, cache: CachedThreadLocal::new() })
}
}
impl<'c> RegularExpression for ExecNoSyncStr<'c> {
type Text = str;
fn slots_len(&self) -> usize { self.0.slots_len() }
fn next_after_empty(&self, text: &str, i: usize) -> usize {
next_utf8(text.as_bytes(), i)
}
#[inline(always)] // reduces constant overhead
fn shortest_match_at(&self, text: &str, start: usize) -> Option<usize> {
self.0.shortest_match_at(text.as_bytes(), start)
}
#[inline(always)] // reduces constant overhead
fn is_match_at(&self, text: &str, start: usize) -> bool {
self.0.is_match_at(text.as_bytes(), start)
}
#[inline(always)] // reduces constant overhead
fn find_at(&self, text: &str, start: usize) -> Option<(usize, usize)> {
self.0.find_at(text.as_bytes(), start)
}
#[inline(always)] // reduces constant overhead
fn captures_read_at(
&self,
locs: &mut Locations,
text: &str,
start: usize,
) -> Option<(usize, usize)> {
self.0.captures_read_at(locs, text.as_bytes(), start)
}
}
impl<'c> RegularExpression for ExecNoSync<'c> {
type Text = [u8];
/// Returns the number of capture slots in the regular expression. (There
/// are two slots for every capture group, corresponding to possibly empty
/// start and end locations of the capture.)
fn slots_len(&self) -> usize {
self.ro.nfa.captures.len() * 2
}
fn next_after_empty(&self, _text: &[u8], i: usize) -> usize {
i + 1
}
/// Returns the end of a match location, possibly occurring before the
/// end location of the correct leftmost-first match.
#[inline(always)] // reduces constant overhead
fn shortest_match_at(&self, text: &[u8], start: usize) -> Option<usize> {
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).map(|(_, e)| e)
}
MatchType::Dfa | MatchType::DfaMany => {
match self.shortest_dfa(text, start) {
dfa::Result::Match(end) => Some(end),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
MatchType::DfaAnchoredReverse => {
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache,
true,
&text[start..],
text.len(),
) {
dfa::Result::Match(_) => Some(text.len()),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
MatchType::DfaSuffix => {
match self.shortest_dfa_reverse_suffix(text, start) {
dfa::Result::Match(e) => Some(e),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.shortest_nfa(text, start),
}
}
MatchType::Nfa(ty) => self.shortest_nfa_type(ty, text, start),
MatchType::Nothing => None,
}
}
/// Returns true if and only if the regex matches text.
///
/// For single regular expressions, this is equivalent to calling
/// shortest_match(...).is_some().
#[inline(always)] // reduces constant overhead
fn is_match_at(&self, text: &[u8], start: usize) -> bool {
if !self.is_anchor_end_match(text) {
return false;
}
// We need to do this dance because shortest_match relies on the NFA
// filling in captures[1], but a RegexSet has no captures. In other
// words, a RegexSet can't (currently) use shortest_match. ---AG
match self.ro.match_type {
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).is_some()
}
MatchType::Dfa | MatchType::DfaMany => {
match self.shortest_dfa(text, start) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
MatchType::DfaAnchoredReverse => {
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache,
true,
&text[start..],
text.len(),
) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
MatchType::DfaSuffix => {
match self.shortest_dfa_reverse_suffix(text, start) {
dfa::Result::Match(_) => true,
dfa::Result::NoMatch(_) => false,
dfa::Result::Quit => self.match_nfa(text, start),
}
}
MatchType::Nfa(ty) => self.match_nfa_type(ty, text, start),
MatchType::Nothing => false,
}
}
/// Finds the start and end location of the leftmost-first match, starting
/// at the given location.
#[inline(always)] // reduces constant overhead
fn find_at(&self, text: &[u8], start: usize) -> Option<(usize, usize)> {
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
MatchType::Literal(ty) => {
self.find_literals(ty, text, start)
}
MatchType::Dfa => {
match self.find_dfa_forward(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
}
}
MatchType::DfaAnchoredReverse => {
match self.find_dfa_anchored_reverse(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
}
}
MatchType::DfaSuffix => {
match self.find_dfa_reverse_suffix(text, start) {
dfa::Result::Match((s, e)) => Some((s, e)),
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.find_nfa(MatchNfaType::Auto, text, start)
}
}
}
MatchType::Nfa(ty) => self.find_nfa(ty, text, start),
MatchType::Nothing => None,
MatchType::DfaMany => {
unreachable!("BUG: RegexSet cannot be used with find")
}
}
}
/// Finds the start and end location of the leftmost-first match and also
/// fills in all matching capture groups.
///
/// The number of capture slots given should be equal to the total number
/// of capture slots in the compiled program.
///
/// Note that the first two slots always correspond to the start and end
/// locations of the overall match.
fn captures_read_at(
&self,
locs: &mut Locations,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
let slots = locs.as_slots();
for slot in slots.iter_mut() {
*slot = None;
}
// If the caller unnecessarily uses this, then we try to save them
// from themselves.
match slots.len() {
0 => return self.find_at(text, start),
2 => {
return self.find_at(text, start).map(|(s, e)| {
slots[0] = Some(s);
slots[1] = Some(e);
(s, e)
});
}
_ => {} // fallthrough
}
if !self.is_anchor_end_match(text) {
return None;
}
match self.ro.match_type {
MatchType::Literal(ty) => {
self.find_literals(ty, text, start).and_then(|(s, e)| {
self.captures_nfa_type(
MatchNfaType::Auto, slots, text, s, e)
})
}
MatchType::Dfa => {
if self.ro.nfa.is_anchored_start {
self.captures_nfa(slots, text, start)
} else {
match self.find_dfa_forward(text, start) {
dfa::Result::Match((s, e)) => {
self.captures_nfa_type(
MatchNfaType::Auto, slots, text, s, e)
}
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => {
self.captures_nfa(slots, text, start)
}
}
}
}
MatchType::DfaAnchoredReverse => {
match self.find_dfa_anchored_reverse(text, start) {
dfa::Result::Match((s, e)) => {
self.captures_nfa_type(
MatchNfaType::Auto, slots, text, s, e)
}
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.captures_nfa(slots, text, start),
}
}
MatchType::DfaSuffix => {
match self.find_dfa_reverse_suffix(text, start) {
dfa::Result::Match((s, e)) => {
self.captures_nfa_type(
MatchNfaType::Auto, slots, text, s, e)
}
dfa::Result::NoMatch(_) => None,
dfa::Result::Quit => self.captures_nfa(slots, text, start),
}
}
MatchType::Nfa(ty) => {
self.captures_nfa_type(ty, slots, text, start, text.len())
}
MatchType::Nothing => None,
MatchType::DfaMany => {
unreachable!("BUG: RegexSet cannot be used with captures")
}
}
}
}
impl<'c> ExecNoSync<'c> {
/// Finds the leftmost-first match using only literal search.
#[inline(always)] // reduces constant overhead
fn find_literals(
&self,
ty: MatchLiteralType,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
use self::MatchLiteralType::*;
match ty {
Unanchored => {
let lits = &self.ro.nfa.prefixes;
lits.find(&text[start..])
.map(|(s, e)| (start + s, start + e))
}
AnchoredStart => {
let lits = &self.ro.nfa.prefixes;
if !self.ro.nfa.is_anchored_start
|| (self.ro.nfa.is_anchored_start && start == 0) {
lits.find_start(&text[start..])
.map(|(s, e)| (start + s, start + e))
} else {
None
}
}
AnchoredEnd => {
let lits = &self.ro.suffixes;
lits.find_end(&text[start..])
.map(|(s, e)| (start + s, start + e))
}
AhoCorasick => {
self.ro.ac.as_ref().unwrap()
.find(&text[start..])
.map(|m| (start + m.start(), start + m.end()))
}
}
}
/// Finds the leftmost-first match (start and end) using only the DFA.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[inline(always)] // reduces constant overhead
fn find_dfa_forward(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use dfa::Result::*;
let end = match dfa::Fsm::forward(
&self.ro.dfa,
self.cache,
false,
text,
start,
) {
NoMatch(i) => return NoMatch(i),
Quit => return Quit,
Match(end) if start == end => return Match((start, start)),
Match(end) => end,
};
// Now run the DFA in reverse to find the start of the match.
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache,
false,
&text[start..],
end - start,
) {
Match(s) => Match((start + s, end)),
NoMatch(i) => NoMatch(i),
Quit => Quit,
}
}
/// Finds the leftmost-first match (start and end) using only the DFA,
/// but assumes the regex is anchored at the end and therefore starts at
/// the end of the regex and matches in reverse.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[inline(always)] // reduces constant overhead
fn find_dfa_anchored_reverse(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use dfa::Result::*;
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache,
false,
&text[start..],
text.len() - start,
) {
Match(s) => Match((start + s, text.len())),
NoMatch(i) => NoMatch(i),
Quit => Quit,
}
}
/// Finds the end of the shortest match using only the DFA.
#[inline(always)] // reduces constant overhead
fn shortest_dfa(&self, text: &[u8], start: usize) -> dfa::Result<usize> {
dfa::Fsm::forward(&self.ro.dfa, self.cache, true, text, start)
}
/// Finds the end of the shortest match using only the DFA by scanning for
/// suffix literals.
///
#[inline(always)] // reduces constant overhead
fn shortest_dfa_reverse_suffix(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<usize> {
match self.exec_dfa_reverse_suffix(text, start) {
None => self.shortest_dfa(text, start),
Some(r) => r.map(|(_, end)| end),
}
}
/// Finds the end of the shortest match using only the DFA by scanning for
/// suffix literals. It also reports the start of the match.
///
/// Note that if None is returned, then the optimization gave up to avoid
/// worst case quadratic behavior. A forward scanning DFA should be tried
/// next.
///
/// If a match is returned and the full leftmost-first match is desired,
/// then a forward scan starting from the beginning of the match must be
/// done.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[inline(always)] // reduces constant overhead
fn exec_dfa_reverse_suffix(
&self,
text: &[u8],
original_start: usize,
) -> Option<dfa::Result<(usize, usize)>> {
use dfa::Result::*;
let lcs = self.ro.suffixes.lcs();
debug_assert!(lcs.len() >= 1);
let mut start = original_start;
let mut end = start;
let mut last_literal = start;
while end <= text.len() {
last_literal += match lcs.find(&text[last_literal..]) {
None => return Some(NoMatch(text.len())),
Some(i) => i,
};
end = last_literal + lcs.len();
match dfa::Fsm::reverse(
&self.ro.dfa_reverse,
self.cache,
false,
&text[start..end],
end - start,
) {
Match(0) | NoMatch(0) => return None,
Match(i) => return Some(Match((start + i, end))),
NoMatch(i) => {
start += i;
last_literal += 1;
continue;
}
Quit => return Some(Quit),
};
}
Some(NoMatch(text.len()))
}
/// Finds the leftmost-first match (start and end) using only the DFA
/// by scanning for suffix literals.
///
/// If the result returned indicates that the DFA quit, then another
/// matching engine should be used.
#[inline(always)] // reduces constant overhead
fn find_dfa_reverse_suffix(
&self,
text: &[u8],
start: usize,
) -> dfa::Result<(usize, usize)> {
use dfa::Result::*;
let match_start = match self.exec_dfa_reverse_suffix(text, start) {
None => return self.find_dfa_forward(text, start),
Some(Match((start, _))) => start,
Some(r) => return r,
};
// At this point, we've found a match. The only way to quit now
// without a match is if the DFA gives up (seems unlikely).
//
// Now run the DFA forwards to find the proper end of the match.
// (The suffix literal match can only indicate the earliest
// possible end location, which may appear before the end of the
// leftmost-first match.)
match dfa::Fsm::forward(
&self.ro.dfa,
self.cache,
false,
text,
match_start,
) {
NoMatch(_) => panic!("BUG: reverse match implies forward match"),
Quit => Quit,
Match(e) => Match((match_start, e)),
}
}
/// Executes the NFA engine to return whether there is a match or not.
///
/// Ideally, we could use shortest_nfa(...).is_some() and get the same
/// performance characteristics, but regex sets don't have captures, which
/// shortest_nfa depends on.
fn match_nfa(
&self,
text: &[u8],
start: usize,
) -> bool {
self.match_nfa_type(MatchNfaType::Auto, text, start)
}
/// Like match_nfa, but allows specification of the type of NFA engine.
fn match_nfa_type(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> bool {
self.exec_nfa(ty, &mut [false], &mut [], true, text, start, text.len())
}
/// Finds the shortest match using an NFA.
fn shortest_nfa(&self, text: &[u8], start: usize) -> Option<usize> {
self.shortest_nfa_type(MatchNfaType::Auto, text, start)
}
/// Like shortest_nfa, but allows specification of the type of NFA engine.
fn shortest_nfa_type(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> Option<usize> {
let mut slots = [None, None];
if self.exec_nfa(
ty,
&mut [false],
&mut slots,
true,
text,
start,
text.len()
) {
slots[1]
} else {
None
}
}
/// Like find, but executes an NFA engine.
fn find_nfa(
&self,
ty: MatchNfaType,
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
let mut slots = [None, None];
if self.exec_nfa(
ty,
&mut [false],
&mut slots,
false,
text,
start,
text.len()
) {
match (slots[0], slots[1]) {
(Some(s), Some(e)) => Some((s, e)),
_ => None,
}
} else {
None
}
}
/// Like find_nfa, but fills in captures.
///
/// `slots` should have length equal to `2 * nfa.captures.len()`.
fn captures_nfa(
&self,
slots: &mut [Slot],
text: &[u8],
start: usize,
) -> Option<(usize, usize)> {
self.captures_nfa_type(
MatchNfaType::Auto, slots, text, start, text.len())
}
/// Like captures_nfa, but allows specification of type of NFA engine.
fn captures_nfa_type(
&self,
ty: MatchNfaType,
slots: &mut [Slot],
text: &[u8],
start: usize,
end: usize,
) -> Option<(usize, usize)> {
if self.exec_nfa(ty, &mut [false], slots, false, text, start, end) {
match (slots[0], slots[1]) {
(Some(s), Some(e)) => Some((s, e)),
_ => None,
}
} else {
None
}
}
fn exec_nfa(
&self,
mut ty: MatchNfaType,
matches: &mut [bool],
slots: &mut [Slot],
quit_after_match: bool,
text: &[u8],
start: usize,
end: usize,
) -> bool {
use self::MatchNfaType::*;
if let Auto = ty {
if backtrack::should_exec(self.ro.nfa.len(), text.len()) {
ty = Backtrack;
} else {
ty = PikeVM;
}
}
match ty {
Auto => unreachable!(),
Backtrack => self.exec_backtrack(matches, slots, text, start, end),
PikeVM => {
self.exec_pikevm(
matches, slots, quit_after_match, text, start, end)
}
}
}
/// Always run the NFA algorithm.
fn exec_pikevm(
&self,
matches: &mut [bool],
slots: &mut [Slot],
quit_after_match: bool,
text: &[u8],
start: usize,
end: usize,