-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathdep_node.rs
785 lines (684 loc) · 28.2 KB
/
dep_node.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module defines the `DepNode` type which the compiler uses to represent
//! nodes in the dependency graph. A `DepNode` consists of a `DepKind` (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc)
//! and a `Fingerprint`, a 128 bit hash value the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g. NodeId, DefId, Symbol) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit and has a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//! without the need to do any "rebasing (like we have to do for Spans and
//! NodeIds) or "retracing" like we had to do for `DefId` in earlier
//! implementations of the dependency graph.
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//! implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//! memory without any post-processing (e.g. "abomination-style" pointer
//! reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//! refer to things that do not exist anymore. In previous implementations
//! `DepNode` contained a `DefId`. A `DepNode` referring to something that
//! had been removed between the previous and the current compilation session
//! could not be instantiated because the current compilation session
//! contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro
//! defines the `DepKind` enum and a corresponding `DepConstructor` enum. The
//! `DepConstructor` enum links a `DepKind` to the parameters that are needed at
//! runtime in order to construct a valid `DepNode` fingerprint.
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//! `DepNode`s, like `Krate`, represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//! in which case it is possible to map the node's fingerprint back to the
//! `DefId` it was computed from. In other cases, too much information gets
//! lost during fingerprint computation.
//!
//! The `DepConstructor` enum, together with `DepNode::new()` ensures that only
//! valid `DepNode` instances can be constructed. For example, the API does not
//! allow for constructing parameterless `DepNode`s with anything other
//! than a zeroed out fingerprint. More generally speaking, it relieves the
//! user of the `DepNode` API of having to know how to compute the expected
//! fingerprint for a given set of node parameters.
use hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX};
use hir::map::DefPathHash;
use hir::{HirId, ItemLocalId};
use ich::Fingerprint;
use ty::{TyCtxt, Instance, InstanceDef, ParamEnv, ParamEnvAnd, PolyTraitRef, Ty};
use ty::subst::Substs;
use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
use ich::StableHashingContext;
use std::fmt;
use std::hash::Hash;
use syntax_pos::symbol::InternedString;
// erase!() just makes tokens go away. It's used to specify which macro argument
// is repeated (i.e. which sub-expression of the macro we are in) but don't need
// to actually use any of the arguments.
macro_rules! erase {
($x:tt) => ({})
}
macro_rules! is_anon_attr {
(anon) => (true);
($attr:ident) => (false);
}
macro_rules! is_input_attr {
(input) => (true);
($attr:ident) => (false);
}
macro_rules! contains_anon_attr {
($($attr:ident),*) => ({$(is_anon_attr!($attr) | )* false});
}
macro_rules! contains_input_attr {
($($attr:ident),*) => ({$(is_input_attr!($attr) | )* false});
}
macro_rules! define_dep_nodes {
(<$tcx:tt>
$(
[$($attr:ident),* ]
$variant:ident $(( $($tuple_arg:tt),* ))*
$({ $($struct_arg_name:ident : $struct_arg_ty:ty),* })*
,)*
) => (
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub enum DepKind {
$($variant),*
}
impl DepKind {
#[allow(unreachable_code)]
#[inline]
pub fn can_reconstruct_query_key<$tcx>(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
if contains_anon_attr!($($attr),*) {
return false;
}
// tuple args
$({
return <( $($tuple_arg,)* ) as DepNodeParams>
::CAN_RECONSTRUCT_QUERY_KEY;
})*
// struct args
$({
return <( $($struct_arg_ty,)* ) as DepNodeParams>
::CAN_RECONSTRUCT_QUERY_KEY;
})*
true
}
)*
}
}
#[inline]
pub fn is_anon(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_anon_attr!($($attr),*) }
)*
}
}
#[inline]
pub fn is_input(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_input_attr!($($attr),*) }
)*
}
}
#[allow(unreachable_code)]
#[inline]
pub fn has_params(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
// tuple args
$({
$(erase!($tuple_arg);)*
return true;
})*
// struct args
$({
$(erase!($struct_arg_name);)*
return true;
})*
false
}
)*
}
}
}
pub enum DepConstructor<$tcx> {
$(
$variant $(( $($tuple_arg),* ))*
$({ $($struct_arg_name : $struct_arg_ty),* })*
),*
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub struct DepNode {
pub kind: DepKind,
pub hash: Fingerprint,
}
impl DepNode {
#[allow(unreachable_code, non_snake_case)]
pub fn new<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
dep: DepConstructor<'gcx>)
-> DepNode
where 'gcx: 'a + 'tcx,
'tcx: 'a
{
match dep {
$(
DepConstructor :: $variant $(( $($tuple_arg),* ))*
$({ $($struct_arg_name),* })*
=>
{
// tuple args
$({
let tupled_args = ( $($tuple_arg,)* );
let hash = DepNodeParams::to_fingerprint(&tupled_args,
tcx);
let dep_node = DepNode {
kind: DepKind::$variant,
hash
};
if cfg!(debug_assertions) &&
!dep_node.kind.can_reconstruct_query_key() &&
(tcx.sess.opts.debugging_opts.incremental_info ||
tcx.sess.opts.debugging_opts.query_dep_graph)
{
tcx.dep_graph.register_dep_node_debug_str(dep_node, || {
tupled_args.to_debug_str(tcx)
});
}
return dep_node;
})*
// struct args
$({
let tupled_args = ( $($struct_arg_name,)* );
let hash = DepNodeParams::to_fingerprint(&tupled_args,
tcx);
let dep_node = DepNode {
kind: DepKind::$variant,
hash
};
if cfg!(debug_assertions) &&
!dep_node.kind.can_reconstruct_query_key() &&
(tcx.sess.opts.debugging_opts.incremental_info ||
tcx.sess.opts.debugging_opts.query_dep_graph)
{
tcx.dep_graph.register_dep_node_debug_str(dep_node, || {
tupled_args.to_debug_str(tcx)
});
}
return dep_node;
})*
DepNode {
kind: DepKind::$variant,
hash: Fingerprint::zero(),
}
}
)*
}
}
/// Construct a DepNode from the given DepKind and DefPathHash. This
/// method will assert that the given DepKind actually requires a
/// single DefId/DefPathHash parameter.
#[inline]
pub fn from_def_path_hash(kind: DepKind,
def_path_hash: DefPathHash)
-> DepNode {
assert!(kind.can_reconstruct_query_key() && kind.has_params());
DepNode {
kind,
hash: def_path_hash.0,
}
}
/// Create a new, parameterless DepNode. This method will assert
/// that the DepNode corresponding to the given DepKind actually
/// does not require any parameters.
#[inline]
pub fn new_no_params(kind: DepKind) -> DepNode {
assert!(!kind.has_params());
DepNode {
kind,
hash: Fingerprint::zero(),
}
}
/// Extract the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
#[inline]
pub fn extract_def_id(&self, tcx: TyCtxt) -> Option<DefId> {
if self.kind.can_reconstruct_query_key() {
let def_path_hash = DefPathHash(self.hash);
if let Some(ref def_path_map) = tcx.def_path_hash_to_def_id.as_ref() {
def_path_map.get(&def_path_hash).cloned()
} else {
None
}
} else {
None
}
}
/// Used in testing
pub fn from_label_string(label: &str,
def_path_hash: DefPathHash)
-> Result<DepNode, ()> {
let kind = match label {
$(
stringify!($variant) => DepKind::$variant,
)*
_ => return Err(()),
};
if !kind.can_reconstruct_query_key() {
return Err(());
}
if kind.has_params() {
Ok(def_path_hash.to_dep_node(kind))
} else {
Ok(DepNode::new_no_params(kind))
}
}
/// Used in testing
pub fn has_label_string(label: &str) -> bool {
match label {
$(
stringify!($variant) => true,
)*
_ => false,
}
}
}
/// Contains variant => str representations for constructing
/// DepNode groups for tests.
#[allow(dead_code, non_upper_case_globals)]
pub mod label_strs {
$(
pub const $variant: &'static str = stringify!($variant);
)*
}
);
}
impl fmt::Debug for DepNode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.kind)?;
if !self.kind.has_params() && !self.kind.is_anon() {
return Ok(());
}
write!(f, "(")?;
::ty::tls::with_opt(|opt_tcx| {
if let Some(tcx) = opt_tcx {
if let Some(def_id) = self.extract_def_id(tcx) {
write!(f, "{}", tcx.def_path_debug_str(def_id))?;
} else if let Some(ref s) = tcx.dep_graph.dep_node_debug_str(*self) {
write!(f, "{}", s)?;
} else {
write!(f, "{}", self.hash)?;
}
} else {
write!(f, "{}", self.hash)?;
}
Ok(())
})?;
write!(f, ")")
}
}
impl DefPathHash {
#[inline]
pub fn to_dep_node(self, kind: DepKind) -> DepNode {
DepNode::from_def_path_hash(kind, self)
}
}
impl DefId {
#[inline]
pub fn to_dep_node(self, tcx: TyCtxt, kind: DepKind) -> DepNode {
DepNode::from_def_path_hash(kind, tcx.def_path_hash(self))
}
}
impl DepKind {
#[inline]
pub fn fingerprint_needed_for_crate_hash(self) -> bool {
match self {
DepKind::HirBody |
DepKind::Krate => true,
_ => false,
}
}
}
define_dep_nodes!( <'tcx>
// Represents the `Krate` as a whole (the `hir::Krate` value) (as
// distinct from the krate module). This is basically a hash of
// the entire krate, so if you read from `Krate` (e.g., by calling
// `tcx.hir.krate()`), we will have to assume that any change
// means that you need to be recompiled. This is because the
// `Krate` value gives you access to all other items. To avoid
// this fate, do not call `tcx.hir.krate()`; instead, prefer
// wrappers like `tcx.visit_all_items_in_krate()`. If there is no
// suitable wrapper, you can use `tcx.dep_graph.ignore()` to gain
// access to the krate, but you must remember to add suitable
// edges yourself for the individual items that you read.
[input] Krate,
// Represents the body of a function or method. The def-id is that of the
// function/method.
[input] HirBody(DefId),
// Represents the HIR node with the given node-id
[input] Hir(DefId),
// Represents metadata from an extern crate.
[input] CrateMetadata(CrateNum),
// Represents some artifact that we save to disk. Note that these
// do not have a def-id as part of their identifier.
[] WorkProduct(WorkProductId),
// Represents different phases in the compiler.
[] RegionScopeTree(DefId),
[] Coherence,
[] CoherenceInherentImplOverlapCheck,
[] CoherenceCheckTrait(DefId),
[] PrivacyAccessLevels(CrateNum),
// Represents the MIR for a fn; also used as the task node for
// things read/modify that MIR.
[] MirConstQualif(DefId),
[] MirConst(DefId),
[] MirValidated(DefId),
[] MirOptimized(DefId),
[] MirShim { instance_def: InstanceDef<'tcx> },
[] BorrowCheckKrate,
[] BorrowCheck(DefId),
[] MirBorrowCheck(DefId),
[] UnsafetyViolations(DefId),
[] Reachability,
[] MirKeys,
[] CrateVariances,
// Nodes representing bits of computed IR in the tcx. Each shared
// table in the tcx (or elsewhere) maps to one of these
// nodes.
[] AssociatedItems(DefId),
[] TypeOfItem(DefId),
[] GenericsOfItem(DefId),
[] PredicatesOfItem(DefId),
[] SuperPredicatesOfItem(DefId),
[] TraitDefOfItem(DefId),
[] AdtDefOfItem(DefId),
[] IsDefaultImpl(DefId),
[] ImplTraitRef(DefId),
[] ImplPolarity(DefId),
[] ClosureKind(DefId),
[] FnSignature(DefId),
[] GenSignature(DefId),
[] CoerceUnsizedInfo(DefId),
[] ItemVarianceConstraints(DefId),
[] ItemVariances(DefId),
[] IsConstFn(DefId),
[] IsForeignItem(DefId),
[] TypeParamPredicates { item_id: DefId, param_id: DefId },
[] SizedConstraint(DefId),
[] DtorckConstraint(DefId),
[] AdtDestructor(DefId),
[] AssociatedItemDefIds(DefId),
[] InherentImpls(DefId),
[] TypeckBodiesKrate,
[] TypeckTables(DefId),
[] HasTypeckTables(DefId),
[] ConstEval { param_env: ParamEnvAnd<'tcx, (DefId, &'tcx Substs<'tcx>)> },
[] SymbolName(DefId),
[] InstanceSymbolName { instance: Instance<'tcx> },
[] SpecializationGraph(DefId),
[] ObjectSafety(DefId),
[] FulfillObligation { param_env: ParamEnv<'tcx>, trait_ref: PolyTraitRef<'tcx> },
[] IsCopy { param_env: ParamEnvAnd<'tcx, Ty<'tcx>> },
[] IsSized { param_env: ParamEnvAnd<'tcx, Ty<'tcx>> },
[] IsFreeze { param_env: ParamEnvAnd<'tcx, Ty<'tcx>> },
[] NeedsDrop { param_env: ParamEnvAnd<'tcx, Ty<'tcx>> },
[] Layout { param_env: ParamEnvAnd<'tcx, Ty<'tcx>> },
// The set of impls for a given trait.
[] TraitImpls(DefId),
[] AllLocalTraitImpls,
// Trait selection cache is a little funny. Given a trait
// reference like `Foo: SomeTrait<Bar>`, there could be
// arbitrarily many def-ids to map on in there (e.g., `Foo`,
// `SomeTrait`, `Bar`). We could have a vector of them, but it
// requires heap-allocation, and trait sel in general can be a
// surprisingly hot path. So instead we pick two def-ids: the
// trait def-id, and the first def-id in the input types. If there
// is no def-id in the input types, then we use the trait def-id
// again. So for example:
//
// - `i32: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `u32: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `Clone: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Clone }`
// - `Vec<i32>: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: Vec }`
// - `String: Clone` -> `TraitSelect { trait_def_id: Clone, self_def_id: String }`
// - `Foo: Trait<Bar>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `Foo: Trait<i32>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `(Foo, Bar): Trait` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
// - `i32: Trait<Foo>` -> `TraitSelect { trait_def_id: Trait, self_def_id: Foo }`
//
// You can see that we map many trait refs to the same
// trait-select node. This is not a problem, it just means
// imprecision in our dep-graph tracking. The important thing is
// that for any given trait-ref, we always map to the **same**
// trait-select node.
[anon] TraitSelect,
[] ParamEnv(DefId),
[] DescribeDef(DefId),
[] DefSpan(DefId),
[] LookupStability(DefId),
[] LookupDeprecationEntry(DefId),
[] ItemBodyNestedBodies(DefId),
[] ConstIsRvaluePromotableToStatic(DefId),
[] ImplParent(DefId),
[] TraitOfItem(DefId),
[] IsExportedSymbol(DefId),
[] IsMirAvailable(DefId),
[] ItemAttrs(DefId),
[] FnArgNames(DefId),
[] DylibDepFormats(CrateNum),
[] IsPanicRuntime(CrateNum),
[] IsCompilerBuiltins(CrateNum),
[] HasGlobalAllocator(CrateNum),
[] ExternCrate(DefId),
[] LintLevels,
[] Specializes { impl1: DefId, impl2: DefId },
[input] InScopeTraits(DefIndex),
[] ModuleExports(DefId),
[] IsSanitizerRuntime(CrateNum),
[] IsProfilerRuntime(CrateNum),
[] GetPanicStrategy(CrateNum),
[] IsNoBuiltins(CrateNum),
[] ImplDefaultness(DefId),
[] ExportedSymbolIds(CrateNum),
[] NativeLibraries(CrateNum),
[] PluginRegistrarFn(CrateNum),
[] DeriveRegistrarFn(CrateNum),
[] CrateDisambiguator(CrateNum),
[] CrateHash(CrateNum),
[] OriginalCrateName(CrateNum),
[] ImplementationsOfTrait { krate: CrateNum, trait_id: DefId },
[] AllTraitImplementations(CrateNum),
[] IsDllimportForeignItem(DefId),
[] IsStaticallyIncludedForeignItem(DefId),
[] NativeLibraryKind(DefId),
[] LinkArgs,
[] NamedRegion(DefIndex),
[] IsLateBound(DefIndex),
[] ObjectLifetimeDefaults(DefIndex),
[] Visibility(DefId),
[] DepKind(CrateNum),
[] CrateName(CrateNum),
[] ItemChildren(DefId),
[] ExternModStmtCnum(DefId),
[] GetLangItems,
[] DefinedLangItems(CrateNum),
[] MissingLangItems(CrateNum),
[] ExternConstBody(DefId),
[] VisibleParentMap,
[] MissingExternCrateItem(CrateNum),
[] UsedCrateSource(CrateNum),
[] PostorderCnums,
[] HasCloneClosures(CrateNum),
[] HasCopyClosures(CrateNum),
[] Freevars(DefId),
[] MaybeUnusedTraitImport(DefId),
[] MaybeUnusedExternCrates,
[] StabilityIndex,
[] AllCrateNums,
[] ExportedSymbols(CrateNum),
[] CollectAndPartitionTranslationItems,
[] ExportName(DefId),
[] ContainsExternIndicator(DefId),
[] IsTranslatedFunction(DefId),
[] CodegenUnit(InternedString),
[] CompileCodegenUnit(InternedString),
[] OutputFilenames,
// We use this for most things when incr. comp. is turned off.
[] Null,
);
trait DepNodeParams<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> : fmt::Debug {
const CAN_RECONSTRUCT_QUERY_KEY: bool;
/// This method turns the parameters of a DepNodeConstructor into an opaque
/// Fingerprint to be used in DepNode.
/// Not all DepNodeParams support being turned into a Fingerprint (they
/// don't need to if the corresponding DepNode is anonymous).
fn to_fingerprint(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> Fingerprint {
panic!("Not implemented. Accidentally called on anonymous node?")
}
fn to_debug_str(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> String {
format!("{:?}", self)
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a, T> DepNodeParams<'a, 'gcx, 'tcx> for T
where T: HashStable<StableHashingContext<'gcx>> + fmt::Debug
{
default const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
default fn to_fingerprint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Fingerprint {
let mut hcx = tcx.create_stable_hashing_context();
let mut hasher = StableHasher::new();
self.hash_stable(&mut hcx, &mut hasher);
hasher.finish()
}
default fn to_debug_str(&self, _: TyCtxt<'a, 'gcx, 'tcx>) -> String {
format!("{:?}", *self)
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (DefId,) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt) -> Fingerprint {
tcx.def_path_hash(self.0).0
}
fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String {
tcx.item_path_str(self.0)
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (DefIndex,) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt) -> Fingerprint {
tcx.hir.definitions().def_path_hash(self.0).0
}
fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String {
tcx.item_path_str(DefId::local(self.0))
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (CrateNum,) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = true;
fn to_fingerprint(&self, tcx: TyCtxt) -> Fingerprint {
let def_id = DefId {
krate: self.0,
index: CRATE_DEF_INDEX,
};
tcx.def_path_hash(def_id).0
}
fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String {
tcx.crate_name(self.0).as_str().to_string()
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (DefId, DefId) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt) -> Fingerprint {
let (def_id_0, def_id_1) = *self;
let def_path_hash_0 = tcx.def_path_hash(def_id_0);
let def_path_hash_1 = tcx.def_path_hash(def_id_1);
def_path_hash_0.0.combine(def_path_hash_1.0)
}
fn to_debug_str(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> String {
let (def_id_0, def_id_1) = *self;
format!("({}, {})",
tcx.def_path_debug_str(def_id_0),
tcx.def_path_debug_str(def_id_1))
}
}
impl<'a, 'gcx: 'tcx + 'a, 'tcx: 'a> DepNodeParams<'a, 'gcx, 'tcx> for (HirId,) {
const CAN_RECONSTRUCT_QUERY_KEY: bool = false;
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt) -> Fingerprint {
let (HirId {
owner,
local_id: ItemLocalId(local_id),
},) = *self;
let def_path_hash = tcx.def_path_hash(DefId::local(owner));
let local_id = Fingerprint::from_smaller_hash(local_id as u64);
def_path_hash.0.combine(local_id)
}
}
/// A "work product" corresponds to a `.o` (or other) file that we
/// save in between runs. These ids do not have a DefId but rather
/// some independent path or string that persists between runs without
/// the need to be mapped or unmapped. (This ensures we can serialize
/// them even in the absence of a tcx.)
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
pub struct WorkProductId {
hash: Fingerprint
}
impl WorkProductId {
pub fn from_cgu_name(cgu_name: &str) -> WorkProductId {
let mut hasher = StableHasher::new();
cgu_name.len().hash(&mut hasher);
cgu_name.hash(&mut hasher);
WorkProductId {
hash: hasher.finish()
}
}
pub fn from_fingerprint(fingerprint: Fingerprint) -> WorkProductId {
WorkProductId {
hash: fingerprint
}
}
pub fn to_dep_node(self) -> DepNode {
DepNode {
kind: DepKind::WorkProduct,
hash: self.hash,
}
}
}
impl_stable_hash_for!(struct ::dep_graph::WorkProductId {
hash
});