-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathlib.rs
389 lines (335 loc) · 13 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*!
# typeck
The type checker is responsible for:
1. Determining the type of each expression.
2. Resolving methods and traits.
3. Guaranteeing that most type rules are met. ("Most?", you say, "why most?"
Well, dear reader, read on)
The main entry point is `check_crate()`. Type checking operates in
several major phases:
1. The collect phase first passes over all items and determines their
type, without examining their "innards".
2. Variance inference then runs to compute the variance of each parameter.
3. Coherence checks for overlapping or orphaned impls.
4. Finally, the check phase then checks function bodies and so forth.
Within the check phase, we check each function body one at a time
(bodies of function expressions are checked as part of the
containing function). Inference is used to supply types wherever
they are unknown. The actual checking of a function itself has
several phases (check, regionck, writeback), as discussed in the
documentation for the `check` module.
The type checker is defined into various submodules which are documented
independently:
- astconv: converts the AST representation of types
into the `ty` representation.
- collect: computes the types of each top-level item and enters them into
the `tcx.types` table for later use.
- coherence: enforces coherence rules, builds some tables.
- variance: variance inference
- outlives: outlives inference
- check: walks over function bodies and type checks them, inferring types for
local variables, type parameters, etc as necessary.
- infer: finds the types to use for each type variable such that
all subtyping and assignment constraints are met. In essence, the check
module specifies the constraints, and the infer module solves them.
## Note
This API is completely unstable and subject to change.
*/
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
#![allow(non_camel_case_types)]
#![feature(bool_to_option)]
#![feature(box_syntax)]
#![feature(crate_visibility_modifier)]
#![feature(in_band_lifetimes)]
#![feature(nll)]
#![feature(or_patterns)]
#![feature(try_blocks)]
#![feature(never_type)]
#![feature(slice_partition_dedup)]
#![recursion_limit = "256"]
#[macro_use]
extern crate log;
#[macro_use]
extern crate rustc_middle;
// This is used by Clippy.
pub mod expr_use_visitor;
mod astconv;
mod check;
mod check_unused;
mod coherence;
mod collect;
mod constrained_generic_params;
mod impl_wf_check;
mod mem_categorization;
mod outlives;
mod structured_errors;
mod variance;
use rustc_errors::{struct_span_err, ErrorReported};
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::Node;
use rustc_infer::infer::{InferOk, TyCtxtInferExt};
use rustc_infer::traits::TraitEngineExt as _;
use rustc_middle::middle;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::util;
use rustc_session::config::EntryFnType;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
use rustc_trait_selection::traits::{
ObligationCause, ObligationCauseCode, TraitEngine, TraitEngineExt as _,
};
use std::iter;
use astconv::{AstConv, Bounds};
pub struct TypeAndSubsts<'tcx> {
substs: SubstsRef<'tcx>,
ty: Ty<'tcx>,
}
fn require_c_abi_if_c_variadic(tcx: TyCtxt<'_>, decl: &hir::FnDecl<'_>, abi: Abi, span: Span) {
if decl.c_variadic && !(abi == Abi::C || abi == Abi::Cdecl) {
let mut err = struct_span_err!(
tcx.sess,
span,
E0045,
"C-variadic function must have C or cdecl calling convention"
);
err.span_label(span, "C-variadics require C or cdecl calling convention").emit();
}
}
fn require_same_types<'tcx>(
tcx: TyCtxt<'tcx>,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) -> bool {
tcx.infer_ctxt().enter(|ref infcx| {
let param_env = ty::ParamEnv::empty();
let mut fulfill_cx = TraitEngine::new(infcx.tcx);
match infcx.at(&cause, param_env).eq(expected, actual) {
Ok(InferOk { obligations, .. }) => {
fulfill_cx.register_predicate_obligations(infcx, obligations);
}
Err(err) => {
infcx.report_mismatched_types(cause, expected, actual, err).emit();
return false;
}
}
match fulfill_cx.select_all_or_error(infcx) {
Ok(()) => true,
Err(errors) => {
infcx.report_fulfillment_errors(&errors, None, false);
false
}
}
})
}
fn check_main_fn_ty(tcx: TyCtxt<'_>, main_def_id: DefId) {
let main_id = tcx.hir().as_local_hir_id(main_def_id).unwrap();
let main_span = tcx.def_span(main_def_id);
let main_t = tcx.type_of(main_def_id);
match main_t.kind {
ty::FnDef(..) => {
if let Some(Node::Item(it)) = tcx.hir().find(main_id) {
if let hir::ItemKind::Fn(.., ref generics, _) = it.kind {
let mut error = false;
if !generics.params.is_empty() {
let msg = "`main` function is not allowed to have generic \
parameters"
.to_owned();
let label = "`main` cannot have generic parameters".to_string();
struct_span_err!(tcx.sess, generics.span, E0131, "{}", msg)
.span_label(generics.span, label)
.emit();
error = true;
}
if let Some(sp) = generics.where_clause.span() {
struct_span_err!(
tcx.sess,
sp,
E0646,
"`main` function is not allowed to have a `where` clause"
)
.span_label(sp, "`main` cannot have a `where` clause")
.emit();
error = true;
}
if error {
return;
}
}
}
let actual = tcx.fn_sig(main_def_id);
let expected_return_type = if tcx.lang_items().termination().is_some() {
// we take the return type of the given main function, the real check is done
// in `check_fn`
actual.output().skip_binder()
} else {
// standard () main return type
tcx.mk_unit()
};
let se_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig(
iter::empty(),
expected_return_type,
false,
hir::Unsafety::Normal,
Abi::Rust,
)));
require_same_types(
tcx,
&ObligationCause::new(main_span, main_id, ObligationCauseCode::MainFunctionType),
se_ty,
tcx.mk_fn_ptr(actual),
);
}
_ => {
span_bug!(main_span, "main has a non-function type: found `{}`", main_t);
}
}
}
fn check_start_fn_ty(tcx: TyCtxt<'_>, start_def_id: DefId) {
let start_id = tcx.hir().as_local_hir_id(start_def_id).unwrap();
let start_span = tcx.def_span(start_def_id);
let start_t = tcx.type_of(start_def_id);
match start_t.kind {
ty::FnDef(..) => {
if let Some(Node::Item(it)) = tcx.hir().find(start_id) {
if let hir::ItemKind::Fn(.., ref generics, _) = it.kind {
let mut error = false;
if !generics.params.is_empty() {
struct_span_err!(
tcx.sess,
generics.span,
E0132,
"start function is not allowed to have type parameters"
)
.span_label(generics.span, "start function cannot have type parameters")
.emit();
error = true;
}
if let Some(sp) = generics.where_clause.span() {
struct_span_err!(
tcx.sess,
sp,
E0647,
"start function is not allowed to have a `where` clause"
)
.span_label(sp, "start function cannot have a `where` clause")
.emit();
error = true;
}
if error {
return;
}
}
}
let se_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig(
[tcx.types.isize, tcx.mk_imm_ptr(tcx.mk_imm_ptr(tcx.types.u8))].iter().cloned(),
tcx.types.isize,
false,
hir::Unsafety::Normal,
Abi::Rust,
)));
require_same_types(
tcx,
&ObligationCause::new(start_span, start_id, ObligationCauseCode::StartFunctionType),
se_ty,
tcx.mk_fn_ptr(tcx.fn_sig(start_def_id)),
);
}
_ => {
span_bug!(start_span, "start has a non-function type: found `{}`", start_t);
}
}
}
fn check_for_entry_fn(tcx: TyCtxt<'_>) {
match tcx.entry_fn(LOCAL_CRATE) {
Some((def_id, EntryFnType::Main)) => check_main_fn_ty(tcx, def_id),
Some((def_id, EntryFnType::Start)) => check_start_fn_ty(tcx, def_id),
_ => {}
}
}
pub fn provide(providers: &mut Providers<'_>) {
collect::provide(providers);
coherence::provide(providers);
check::provide(providers);
variance::provide(providers);
outlives::provide(providers);
impl_wf_check::provide(providers);
}
pub fn check_crate(tcx: TyCtxt<'_>) -> Result<(), ErrorReported> {
let _prof_timer = tcx.sess.timer("type_check_crate");
// this ensures that later parts of type checking can assume that items
// have valid types and not error
// FIXME(matthewjasper) We shouldn't need to do this.
tcx.sess.track_errors(|| {
tcx.sess.time("type_collecting", || {
for &module in tcx.hir().krate().modules.keys() {
tcx.ensure().collect_mod_item_types(tcx.hir().local_def_id(module));
}
});
})?;
if tcx.features().rustc_attrs {
tcx.sess.track_errors(|| {
tcx.sess.time("outlives_testing", || outlives::test::test_inferred_outlives(tcx));
})?;
}
tcx.sess.track_errors(|| {
tcx.sess.time("impl_wf_inference", || impl_wf_check::impl_wf_check(tcx));
})?;
tcx.sess.track_errors(|| {
tcx.sess.time("coherence_checking", || coherence::check_coherence(tcx));
})?;
if tcx.features().rustc_attrs {
tcx.sess.track_errors(|| {
tcx.sess.time("variance_testing", || variance::test::test_variance(tcx));
})?;
}
tcx.sess.track_errors(|| {
tcx.sess.time("wf_checking", || check::check_wf_new(tcx));
})?;
tcx.sess.time("item_types_checking", || {
for &module in tcx.hir().krate().modules.keys() {
tcx.ensure().check_mod_item_types(tcx.hir().local_def_id(module));
}
});
tcx.sess.time("item_bodies_checking", || tcx.typeck_item_bodies(LOCAL_CRATE));
check_unused::check_crate(tcx);
check_for_entry_fn(tcx);
if tcx.sess.err_count() == 0 { Ok(()) } else { Err(ErrorReported) }
}
/// A quasi-deprecated helper used in rustdoc and clippy to get
/// the type from a HIR node.
pub fn hir_ty_to_ty<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: &hir::Ty<'_>) -> Ty<'tcx> {
// In case there are any projections, etc., find the "environment"
// def-ID that will be used to determine the traits/predicates in
// scope. This is derived from the enclosing item-like thing.
let env_node_id = tcx.hir().get_parent_item(hir_ty.hir_id);
let env_def_id = tcx.hir().local_def_id(env_node_id);
let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id);
astconv::AstConv::ast_ty_to_ty(&item_cx, hir_ty)
}
pub fn hir_trait_to_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
hir_trait: &hir::TraitRef<'_>,
) -> Bounds<'tcx> {
// In case there are any projections, etc., find the "environment"
// def-ID that will be used to determine the traits/predicates in
// scope. This is derived from the enclosing item-like thing.
let env_hir_id = tcx.hir().get_parent_item(hir_trait.hir_ref_id);
let env_def_id = tcx.hir().local_def_id(env_hir_id);
let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id);
let mut bounds = Bounds::default();
let _ = AstConv::instantiate_poly_trait_ref_inner(
&item_cx,
hir_trait,
DUMMY_SP,
hir::Constness::NotConst,
tcx.types.err,
&mut bounds,
true,
);
bounds
}