-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathmod.rs
3110 lines (2837 loc) · 130 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Candidate selection. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
use self::EvaluationResult::*;
use self::SelectionCandidate::*;
use super::coherence::{self, Conflict};
use super::const_evaluatable;
use super::project;
use super::project::normalize_with_depth_to;
use super::project::ProjectionTyObligation;
use super::util;
use super::util::closure_trait_ref_and_return_type;
use super::wf;
use super::{
ImplDerivedObligation, ImplDerivedObligationCause, Normalized, Obligation, ObligationCause,
ObligationCauseCode, Overflow, PolyTraitObligation, PredicateObligation, Selection,
SelectionError, SelectionResult, TraitQueryMode,
};
use crate::infer::{InferCtxt, InferOk, TypeFreshener};
use crate::solve::InferCtxtSelectExt;
use crate::traits::error_reporting::TypeErrCtxtExt;
use crate::traits::project::try_normalize_with_depth_to;
use crate::traits::project::ProjectAndUnifyResult;
use crate::traits::project::ProjectionCacheKeyExt;
use crate::traits::ProjectionCacheKey;
use crate::traits::Unimplemented;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::Diagnostic;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::BoundRegionConversionTime;
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::traits::TraitObligation;
use rustc_middle::dep_graph::dep_kinds;
use rustc_middle::dep_graph::DepNodeIndex;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::_match::MatchAgainstFreshVars;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::relate::TypeRelation;
use rustc_middle::ty::GenericArgsRef;
use rustc_middle::ty::{self, EarlyBinder, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable, TypeVisitableExt};
use rustc_span::symbol::sym;
use rustc_span::Symbol;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::fmt::{self, Display};
use std::iter;
pub use rustc_middle::traits::select::*;
use rustc_middle::ty::print::with_no_trimmed_paths;
mod candidate_assembly;
mod confirmation;
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum IntercrateAmbiguityCause<'tcx> {
DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
ReservationImpl { message: Symbol },
}
impl<'tcx> IntercrateAmbiguityCause<'tcx> {
/// Emits notes when the overlap is caused by complex intercrate ambiguities.
/// See #23980 for details.
pub fn add_intercrate_ambiguity_hint(&self, err: &mut Diagnostic) {
err.note(self.intercrate_ambiguity_hint());
}
pub fn intercrate_ambiguity_hint(&self) -> String {
with_no_trimmed_paths!(match self {
IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
format!(
"downstream crates may implement trait `{trait_desc}`{self_desc}",
trait_desc = trait_ref.print_trait_sugared(),
self_desc = if let Some(self_ty) = self_ty {
format!(" for type `{self_ty}`")
} else {
String::new()
}
)
}
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
format!(
"upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
in future versions",
trait_desc = trait_ref.print_trait_sugared(),
self_desc = if let Some(self_ty) = self_ty {
format!(" for type `{self_ty}`")
} else {
String::new()
}
)
}
IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
})
}
}
pub struct SelectionContext<'cx, 'tcx> {
pub infcx: &'cx InferCtxt<'tcx>,
/// Freshener used specifically for entries on the obligation
/// stack. This ensures that all entries on the stack at one time
/// will have the same set of placeholder entries, which is
/// important for checking for trait bounds that recursively
/// require themselves.
freshener: TypeFreshener<'cx, 'tcx>,
/// If `intercrate` is set, we remember predicates which were
/// considered ambiguous because of impls potentially added in other crates.
/// This is used in coherence to give improved diagnostics.
/// We don't do his until we detect a coherence error because it can
/// lead to false overflow results (#47139) and because always
/// computing it may negatively impact performance.
intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
/// The mode that trait queries run in, which informs our error handling
/// policy. In essence, canonicalized queries need their errors propagated
/// rather than immediately reported because we do not have accurate spans.
query_mode: TraitQueryMode,
treat_inductive_cycle: TreatInductiveCycleAs,
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx> {
obligation: &'prev PolyTraitObligation<'tcx>,
/// The trait predicate from `obligation` but "freshened" with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
/// Starts out equal to `depth` -- if, during evaluation, we
/// encounter a cycle, then we will set this flag to the minimum
/// depth of that cycle for all participants in the cycle. These
/// participants will then forego caching their results. This is
/// not the most efficient solution, but it addresses #60010. The
/// problem we are trying to prevent:
///
/// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
/// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
/// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
///
/// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
/// is `EvaluatedToOk`; this is because they were only considered
/// ok on the premise that if `A: AutoTrait` held, but we indeed
/// encountered a problem (later on) with `A: AutoTrait`. So we
/// currently set a flag on the stack node for `B: AutoTrait` (as
/// well as the second instance of `A: AutoTrait`) to suppress
/// caching.
///
/// This is a simple, targeted fix. A more-performant fix requires
/// deeper changes, but would permit more caching: we could
/// basically defer caching until we have fully evaluated the
/// tree, and then cache the entire tree at once. In any case, the
/// performance impact here shouldn't be so horrible: every time
/// this is hit, we do cache at least one trait, so we only
/// evaluate each member of a cycle up to N times, where N is the
/// length of the cycle. This means the performance impact is
/// bounded and we shouldn't have any terrible worst-cases.
reached_depth: Cell<usize>,
previous: TraitObligationStackList<'prev, 'tcx>,
/// The number of parent frames plus one (thus, the topmost frame has depth 1).
depth: usize,
/// The depth-first number of this node in the search graph -- a
/// pre-order index. Basically, a freshly incremented counter.
dfn: usize,
}
struct SelectionCandidateSet<'tcx> {
/// A list of candidates that definitely apply to the current
/// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
/// If `true`, then there were candidates that might or might
/// not have applied, but we couldn't tell. This occurs when some
/// of the input types are type variables, in which case there are
/// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
#[derive(PartialEq, Eq, Debug, Clone)]
struct EvaluatedCandidate<'tcx> {
candidate: SelectionCandidate<'tcx>,
evaluation: EvaluationResult,
}
/// When does the builtin impl for `T: Trait` apply?
#[derive(Debug)]
enum BuiltinImplConditions<'tcx> {
/// The impl is conditional on `T1, T2, ...: Trait`.
Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
/// There is no built-in impl. There may be some other
/// candidate (a where-clause or user-defined impl).
None,
/// It is unknown whether there is an impl.
Ambiguous,
}
#[derive(Copy, Clone)]
pub enum TreatInductiveCycleAs {
/// This is the previous behavior, where `Recur` represents an inductive
/// cycle that is known not to hold. This is not forwards-compatible with
/// coinduction, and will be deprecated. This is the default behavior
/// of the old trait solver due to back-compat reasons.
Recur,
/// This is the behavior of the new trait solver, where inductive cycles
/// are treated as ambiguous and possibly holding.
Ambig,
}
impl From<TreatInductiveCycleAs> for EvaluationResult {
fn from(treat: TreatInductiveCycleAs) -> EvaluationResult {
match treat {
TreatInductiveCycleAs::Ambig => EvaluatedToAmbigStackDependent,
TreatInductiveCycleAs::Recur => EvaluatedToErrStackDependent,
}
}
}
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx,
freshener: infcx.freshener(),
intercrate_ambiguity_causes: None,
query_mode: TraitQueryMode::Standard,
treat_inductive_cycle: TreatInductiveCycleAs::Recur,
}
}
pub fn with_treat_inductive_cycle_as_ambig(
infcx: &'cx InferCtxt<'tcx>,
) -> SelectionContext<'cx, 'tcx> {
// Should be executed in a context where caching is disabled,
// otherwise the cache is poisoned with the temporary result.
assert!(infcx.intercrate);
SelectionContext {
treat_inductive_cycle: TreatInductiveCycleAs::Ambig,
..SelectionContext::new(infcx)
}
}
pub fn with_query_mode(
infcx: &'cx InferCtxt<'tcx>,
query_mode: TraitQueryMode,
) -> SelectionContext<'cx, 'tcx> {
debug!(?query_mode, "with_query_mode");
SelectionContext { query_mode, ..SelectionContext::new(infcx) }
}
/// Enables tracking of intercrate ambiguity causes. See
/// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
assert!(self.is_intercrate());
assert!(self.intercrate_ambiguity_causes.is_none());
self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
}
/// Gets the intercrate ambiguity causes collected since tracking
/// was enabled and disables tracking at the same time. If
/// tracking is not enabled, just returns an empty vector.
pub fn take_intercrate_ambiguity_causes(
&mut self,
) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
assert!(self.is_intercrate());
self.intercrate_ambiguity_causes.take().unwrap_or_default()
}
pub fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
pub fn is_intercrate(&self) -> bool {
self.infcx.intercrate
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
#[instrument(level = "debug", skip(self), ret)]
pub fn poly_select(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
if self.infcx.next_trait_solver() {
return self.infcx.select_in_new_trait_solver(obligation);
}
let candidate = match self.select_from_obligation(obligation) {
Err(SelectionError::Overflow(OverflowError::Canonical)) => {
// In standard mode, overflow must have been caught and reported
// earlier.
assert!(self.query_mode == TraitQueryMode::Canonical);
return Err(SelectionError::Overflow(OverflowError::Canonical));
}
Err(e) => {
return Err(e);
}
Ok(None) => {
return Ok(None);
}
Ok(Some(candidate)) => candidate,
};
match self.confirm_candidate(obligation, candidate) {
Err(SelectionError::Overflow(OverflowError::Canonical)) => {
assert!(self.query_mode == TraitQueryMode::Canonical);
Err(SelectionError::Overflow(OverflowError::Canonical))
}
Err(e) => Err(e),
Ok(candidate) => Ok(Some(candidate)),
}
}
pub fn select(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
self.poly_select(&Obligation {
cause: obligation.cause.clone(),
param_env: obligation.param_env,
predicate: ty::Binder::dummy(obligation.predicate),
recursion_depth: obligation.recursion_depth,
})
}
fn select_from_obligation(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
debug_assert!(!obligation.predicate.has_escaping_bound_vars());
let pec = &ProvisionalEvaluationCache::default();
let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
self.candidate_from_obligation(&stack)
}
#[instrument(level = "debug", skip(self), ret)]
fn candidate_from_obligation<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
debug_assert!(!self.infcx.next_trait_solver());
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
self.check_recursion_limit(stack.obligation, stack.obligation)?;
// Check the cache. Note that we freshen the trait-ref
// separately rather than using `stack.fresh_trait_ref` --
// this is because we want the unbound variables to be
// replaced with fresh types starting from index 0.
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
debug!(?cache_fresh_trait_pred);
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
if let Some(c) =
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
{
debug!("CACHE HIT");
return c;
}
// If no match, compute result and insert into cache.
//
// FIXME(nikomatsakis) -- this cache is not taking into
// account cycles that may have occurred in forming the
// candidate. I don't know of any specific problems that
// result but it seems awfully suspicious.
let (candidate, dep_node) =
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
debug!("CACHE MISS");
self.insert_candidate_cache(
stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone(),
);
candidate
}
fn candidate_from_obligation_no_cache<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let Err(conflict) = self.is_knowable(stack) {
debug!("coherence stage: not knowable");
if self.intercrate_ambiguity_causes.is_some() {
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
let mut no_candidates_apply = true;
for c in candidate_set.vec.iter() {
if self.evaluate_candidate(stack, c)?.may_apply() {
no_candidates_apply = false;
break;
}
}
if !candidate_set.ambiguous && no_candidates_apply {
let trait_ref = self.infcx.resolve_vars_if_possible(
stack.obligation.predicate.skip_binder().trait_ref,
);
if !trait_ref.references_error() {
let self_ty = trait_ref.self_ty();
let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
let cause = if let Conflict::Upstream = conflict {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
};
debug!(?cause, "evaluate_stack: pushing cause");
self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
}
}
}
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let candidates = candidate_set.vec;
debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for `$0: Eq` where `$0` is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes `$0 ==
// usize`, etc. This spells an ambiguity.
let mut candidates = self.filter_impls(candidates, stack.obligation);
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report "`Bar` does
// not implement `Clone`".
if candidates.len() == 1 {
return self.filter_reservation_impls(candidates.pop().unwrap(), stack.obligation);
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization. Propagate overflow if it occurs.
let mut candidates = candidates
.into_iter()
.map(|c| match self.evaluate_candidate(stack, &c) {
Ok(eval) if eval.may_apply() => {
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
}
Ok(_) => Ok(None),
Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
})
.flat_map(Result::transpose)
.collect::<Result<Vec<_>, _>>()?;
debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
// If there are STILL multiple candidates, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let should_drop_i = (0..candidates.len()).filter(|&j| i != j).any(|j| {
self.candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
has_non_region_infer,
) == DropVictim::Yes
});
if should_drop_i {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
} else {
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
// If there's an error type, 'downgrade' our result from
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
// emitting additional spurious errors, since we're guaranteed
// to have emitted at least one.
if stack.obligation.predicate.references_error() {
debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
return Ok(None);
}
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_reservation_impls(candidates.pop().unwrap().candidate, stack.obligation)
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied
/// and returns an `EvaluationResult`. This is meant for the
/// *initial* call.
///
/// Do not use this directly, use `infcx.evaluate_obligation` instead.
pub fn evaluate_root_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
debug_assert!(!self.infcx.next_trait_solver());
self.evaluation_probe(|this| {
let goal =
this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
let mut result = this.evaluate_predicate_recursively(
TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
obligation.clone(),
)?;
// If the predicate has done any inference, then downgrade the
// result to ambiguous.
if this.infcx.shallow_resolve(goal) != goal {
result = result.max(EvaluatedToAmbig);
}
Ok(result)
})
}
fn evaluation_probe(
&mut self,
op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
) -> Result<EvaluationResult, OverflowError> {
self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
let outer_universe = self.infcx.universe();
let result = op(self)?;
match self.infcx.leak_check(outer_universe, Some(snapshot)) {
Ok(()) => {}
Err(_) => return Ok(EvaluatedToErr),
}
if self.infcx.opaque_types_added_in_snapshot(snapshot) {
return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
}
if self.infcx.region_constraints_added_in_snapshot(snapshot) {
Ok(result.max(EvaluatedToOkModuloRegions))
} else {
Ok(result)
}
})
}
/// Evaluates the predicates in `predicates` recursively. Note that
/// this applies projections in the predicates, and therefore
/// is run within an inference probe.
#[instrument(skip(self, stack), level = "debug")]
fn evaluate_predicates_recursively<'o, I>(
&mut self,
stack: TraitObligationStackList<'o, 'tcx>,
predicates: I,
) -> Result<EvaluationResult, OverflowError>
where
I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
{
let mut result = EvaluatedToOk;
for mut obligation in predicates {
obligation.set_depth_from_parent(stack.depth());
let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
if let EvaluatedToErr = eval {
// fast-path - EvaluatedToErr is the top of the lattice,
// so we don't need to look on the other predicates.
return Ok(EvaluatedToErr);
} else {
result = cmp::max(result, eval);
}
}
Ok(result)
}
#[instrument(
level = "debug",
skip(self, previous_stack),
fields(previous_stack = ?previous_stack.head())
ret,
)]
fn evaluate_predicate_recursively<'o>(
&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: PredicateObligation<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
debug_assert!(!self.infcx.next_trait_solver());
// `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
// a `PredicateObligation`. These are distinct types, so we can't
// use any `Option` combinator method that would force them to be
// the same.
match previous_stack.head() {
Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
None => self.check_recursion_limit(&obligation, &obligation)?,
}
ensure_sufficient_stack(|| {
let bound_predicate = obligation.predicate.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
let t = bound_predicate.rebind(t);
debug_assert!(!t.has_escaping_bound_vars());
let obligation = obligation.with(self.tcx(), t);
self.evaluate_trait_predicate_recursively(previous_stack, obligation)
}
ty::PredicateKind::Subtype(p) => {
let p = bound_predicate.rebind(p);
// Does this code ever run?
match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
Ok(Ok(InferOk { obligations, .. })) => {
self.evaluate_predicates_recursively(previous_stack, obligations)
}
Ok(Err(_)) => Ok(EvaluatedToErr),
Err(..) => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Coerce(p) => {
let p = bound_predicate.rebind(p);
// Does this code ever run?
match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
Ok(Ok(InferOk { obligations, .. })) => {
self.evaluate_predicates_recursively(previous_stack, obligations)
}
Ok(Err(_)) => Ok(EvaluatedToErr),
Err(..) => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
// So, there is a bit going on here. First, `WellFormed` predicates
// are coinductive, like trait predicates with auto traits.
// This means that we need to detect if we have recursively
// evaluated `WellFormed(X)`. Otherwise, we would run into
// a "natural" overflow error.
//
// Now, the next question is whether we need to do anything
// special with caching. Considering the following tree:
// - `WF(Foo<T>)`
// - `Bar<T>: Send`
// - `WF(Foo<T>)`
// - `Foo<T>: Trait`
// In this case, the innermost `WF(Foo<T>)` should return
// `EvaluatedToOk`, since it's coinductive. Then if
// `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
// inserted into a cache (because without thinking about `WF`
// goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
// hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
// *do* need to keep track of coinductive cycles.
let cache = previous_stack.cache;
let dfn = cache.next_dfn();
for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
if stack_arg.0 != arg {
continue;
}
debug!("WellFormed({:?}) on stack", arg);
if let Some(stack) = previous_stack.head {
// Okay, let's imagine we have two different stacks:
// `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
// `WF(T) -> T: NonAutoTrait -> WF(T)`
// Because of this, we need to check that all
// predicates between the WF goals are coinductive.
// Otherwise, we can say that `T: NonAutoTrait` is
// true.
// Let's imagine we have a predicate stack like
// `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
// depth ^1 ^2 ^3
// and the current predicate is `WF(T)`. `wf_args`
// would contain `(T, 1)`. We want to check all
// trait predicates greater than `1`. The previous
// stack would be `T: Auto`.
let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
let tcx = self.tcx();
let cycle =
cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
if self.coinductive_match(cycle) {
stack.update_reached_depth(stack_arg.1);
return Ok(EvaluatedToOk);
} else {
return Ok(self.treat_inductive_cycle.into());
}
}
return Ok(EvaluatedToOk);
}
match wf::obligations(
self.infcx,
obligation.param_env,
obligation.cause.body_id,
obligation.recursion_depth + 1,
arg,
obligation.cause.span,
) {
Some(obligations) => {
cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
let result =
self.evaluate_predicates_recursively(previous_stack, obligations);
cache.wf_args.borrow_mut().pop();
let result = result?;
if !result.must_apply_modulo_regions() {
cache.on_failure(dfn);
}
cache.on_completion(dfn);
Ok(result)
}
None => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
// A global type with no free lifetimes or generic parameters
// outlives anything.
if pred.0.has_free_regions()
|| pred.0.has_bound_regions()
|| pred.0.has_non_region_infer()
|| pred.0.has_non_region_infer()
{
Ok(EvaluatedToOkModuloRegions)
} else {
Ok(EvaluatedToOk)
}
}
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
// We do not consider region relationships when evaluating trait matches.
Ok(EvaluatedToOkModuloRegions)
}
ty::PredicateKind::ObjectSafe(trait_def_id) => {
if self.tcx().check_is_object_safe(trait_def_id) {
Ok(EvaluatedToOk)
} else {
Ok(EvaluatedToErr)
}
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
let data = bound_predicate.rebind(data);
let project_obligation = obligation.with(self.tcx(), data);
match project::poly_project_and_unify_type(self, &project_obligation) {
ProjectAndUnifyResult::Holds(mut subobligations) => {
'compute_res: {
// If we've previously marked this projection as 'complete', then
// use the final cached result (either `EvaluatedToOk` or
// `EvaluatedToOkModuloRegions`), and skip re-evaluating the
// sub-obligations.
if let Some(key) =
ProjectionCacheKey::from_poly_projection_predicate(self, data)
{
if let Some(cached_res) = self
.infcx
.inner
.borrow_mut()
.projection_cache()
.is_complete(key)
{
break 'compute_res Ok(cached_res);
}
}
// Need to explicitly set the depth of nested goals here as
// projection obligations can cycle by themselves and in
// `evaluate_predicates_recursively` we only add the depth
// for parent trait goals because only these get added to the
// `TraitObligationStackList`.
for subobligation in subobligations.iter_mut() {
subobligation.set_depth_from_parent(obligation.recursion_depth);
}
let res = self.evaluate_predicates_recursively(
previous_stack,
subobligations,
);
if let Ok(eval_rslt) = res
&& (eval_rslt == EvaluatedToOk
|| eval_rslt == EvaluatedToOkModuloRegions)
&& let Some(key) =
ProjectionCacheKey::from_poly_projection_predicate(
self, data,
)
{
// If the result is something that we can cache, then mark this
// entry as 'complete'. This will allow us to skip evaluating the
// subobligations at all the next time we evaluate the projection
// predicate.
self.infcx
.inner
.borrow_mut()
.projection_cache()
.complete(key, eval_rslt);
}
res
}
}
ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
ProjectAndUnifyResult::Recursive => Ok(self.treat_inductive_cycle.into()),
ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
match const_evaluatable::is_const_evaluatable(
self.infcx,
uv,
obligation.param_env,
obligation.cause.span,
) {
Ok(()) => Ok(EvaluatedToOk),
Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
Err(_) => Ok(EvaluatedToErr),
}
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let tcx = self.tcx();
assert!(
tcx.features().generic_const_exprs,
"`ConstEquate` without a feature gate: {c1:?} {c2:?}",
);
{
let c1 = tcx.expand_abstract_consts(c1);
let c2 = tcx.expand_abstract_consts(c2);
debug!(
"evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
c1, c2
);
use rustc_hir::def::DefKind;
use ty::Unevaluated;
match (c1.kind(), c2.kind()) {
(Unevaluated(a), Unevaluated(b))
if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
{
if let Ok(InferOk { obligations, value: () }) = self
.infcx
.at(&obligation.cause, obligation.param_env)
.trace(c1, c2)
.eq(DefineOpaqueTypes::No, a.args, b.args)
{
return self.evaluate_predicates_recursively(
previous_stack,
obligations,
);
}
}
(_, Unevaluated(_)) | (Unevaluated(_), _) => (),
(_, _) => {
if let Ok(InferOk { obligations, value: () }) = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, c1, c2)
{
return self.evaluate_predicates_recursively(
previous_stack,
obligations,
);
}
}
}
}
let evaluate = |c: ty::Const<'tcx>| {
if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
match self.infcx.try_const_eval_resolve(
obligation.param_env,
unevaluated,
c.ty(),
Some(obligation.cause.span),
) {
Ok(val) => Ok(val),
Err(e) => Err(e),
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match self.infcx.at(&obligation.cause, obligation.param_env).eq(
DefineOpaqueTypes::No,
c1,
c2,
) {
Ok(inf_ok) => self.evaluate_predicates_recursively(
previous_stack,
inf_ok.into_obligations(),
),
Err(_) => Ok(EvaluatedToErr),
}
}
(Err(ErrorHandled::Reported(..)), _)
| (_, Err(ErrorHandled::Reported(..))) => Ok(EvaluatedToErr),
(Err(ErrorHandled::TooGeneric(..)), _)
| (_, Err(ErrorHandled::TooGeneric(..))) => {
if c1.has_non_region_infer() || c2.has_non_region_infer() {
Ok(EvaluatedToAmbig)
} else {
// Two different constants using generic parameters ~> error.
Ok(EvaluatedToErr)
}
}
}
}
ty::PredicateKind::NormalizesTo(..) => {
bug!("NormalizesTo is only used by the new solver")
}
ty::PredicateKind::AliasRelate(..) => {
bug!("AliasRelate is only used by the new solver")
}
ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
match self.infcx.at(&obligation.cause, obligation.param_env).eq(
DefineOpaqueTypes::No,
ct.ty(),
ty,
) {