-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathresolve_lifetime.rs
2318 lines (2103 loc) · 82.2 KB
/
resolve_lifetime.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Name resolution for lifetimes.
//!
//! Name resolution for lifetimes follows MUCH simpler rules than the
//! full resolve. For example, lifetime names are never exported or
//! used between functions, and they operate in a purely top-down
//! way. Therefore we break lifetime name resolution into a separate pass.
use hir::map::Map;
use hir::def::Def;
use hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE};
use hir::ItemLocalId;
use ty::{self, TyCtxt};
use std::cell::Cell;
use std::mem::replace;
use std::rc::Rc;
use syntax::ast;
use syntax::attr;
use syntax::ptr::P;
use syntax_pos::Span;
use errors::DiagnosticBuilder;
use util::nodemap::{DefIdMap, FxHashMap, FxHashSet, NodeMap, NodeSet};
use std::slice;
use rustc::lint;
use hir::{self, GenericParamsExt};
use hir::intravisit::{self, NestedVisitorMap, Visitor};
/// The origin of a named lifetime definition.
///
/// This is used to prevent the usage of in-band lifetimes in `Fn`/`fn` syntax.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub enum LifetimeDefOrigin {
// Explicit binders like `fn foo<'a>(x: &'a u8)`
Explicit,
// In-band declarations like `fn foo(x: &'a u8)`
InBand,
}
impl LifetimeDefOrigin {
fn from_is_in_band(is_in_band: bool) -> Self {
if is_in_band {
LifetimeDefOrigin::InBand
} else {
LifetimeDefOrigin::Explicit
}
}
}
// This counts the no of times a lifetime is used
#[derive(Clone, Copy, Debug)]
pub enum LifetimeUseSet<'tcx> {
One(&'tcx hir::Lifetime),
Many,
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug)]
pub enum Region {
Static,
EarlyBound(
/* index */ u32,
/* lifetime decl */ DefId,
LifetimeDefOrigin,
),
LateBound(
ty::DebruijnIndex,
/* lifetime decl */ DefId,
LifetimeDefOrigin,
),
LateBoundAnon(ty::DebruijnIndex, /* anon index */ u32),
Free(DefId, /* lifetime decl */ DefId),
}
impl Region {
fn early(
hir_map: &Map,
index: &mut u32,
def: &hir::LifetimeDef,
) -> (hir::LifetimeName, Region) {
let i = *index;
*index += 1;
let def_id = hir_map.local_def_id(def.lifetime.id);
let origin = LifetimeDefOrigin::from_is_in_band(def.in_band);
debug!("Region::early: index={} def_id={:?}", i, def_id);
(def.lifetime.name, Region::EarlyBound(i, def_id, origin))
}
fn late(hir_map: &Map, def: &hir::LifetimeDef) -> (hir::LifetimeName, Region) {
let depth = ty::DebruijnIndex::new(1);
let def_id = hir_map.local_def_id(def.lifetime.id);
let origin = LifetimeDefOrigin::from_is_in_band(def.in_band);
(def.lifetime.name, Region::LateBound(depth, def_id, origin))
}
fn late_anon(index: &Cell<u32>) -> Region {
let i = index.get();
index.set(i + 1);
let depth = ty::DebruijnIndex::new(1);
Region::LateBoundAnon(depth, i)
}
fn id(&self) -> Option<DefId> {
match *self {
Region::Static | Region::LateBoundAnon(..) => None,
Region::EarlyBound(_, id, _) | Region::LateBound(_, id, _) | Region::Free(_, id) => {
Some(id)
}
}
}
fn shifted(self, amount: u32) -> Region {
match self {
Region::LateBound(depth, id, origin) => {
Region::LateBound(depth.shifted(amount), id, origin)
}
Region::LateBoundAnon(depth, index) => {
Region::LateBoundAnon(depth.shifted(amount), index)
}
_ => self,
}
}
fn from_depth(self, depth: u32) -> Region {
match self {
Region::LateBound(debruijn, id, origin) => Region::LateBound(
ty::DebruijnIndex {
depth: debruijn.depth - (depth - 1),
},
id,
origin,
),
Region::LateBoundAnon(debruijn, index) => Region::LateBoundAnon(
ty::DebruijnIndex {
depth: debruijn.depth - (depth - 1),
},
index,
),
_ => self,
}
}
fn subst(self, params: &[hir::Lifetime], map: &NamedRegionMap) -> Option<Region> {
if let Region::EarlyBound(index, _, _) = self {
params
.get(index as usize)
.and_then(|lifetime| map.defs.get(&lifetime.id).cloned())
} else {
Some(self)
}
}
}
/// A set containing, at most, one known element.
/// If two distinct values are inserted into a set, then it
/// becomes `Many`, which can be used to detect ambiguities.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub enum Set1<T> {
Empty,
One(T),
Many,
}
impl<T: PartialEq> Set1<T> {
pub fn insert(&mut self, value: T) {
if let Set1::Empty = *self {
*self = Set1::One(value);
return;
}
if let Set1::One(ref old) = *self {
if *old == value {
return;
}
}
*self = Set1::Many;
}
}
pub type ObjectLifetimeDefault = Set1<Region>;
/// Maps the id of each lifetime reference to the lifetime decl
/// that it corresponds to.
///
/// FIXME. This struct gets converted to a `ResolveLifetimes` for
/// actual use. It has the same data, but indexed by `DefIndex`. This
/// is silly.
#[derive(Default)]
struct NamedRegionMap {
// maps from every use of a named (not anonymous) lifetime to a
// `Region` describing how that region is bound
pub defs: NodeMap<Region>,
// the set of lifetime def ids that are late-bound; a region can
// be late-bound if (a) it does NOT appear in a where-clause and
// (b) it DOES appear in the arguments.
pub late_bound: NodeSet,
// For each type and trait definition, maps type parameters
// to the trait object lifetime defaults computed from them.
pub object_lifetime_defaults: NodeMap<Vec<ObjectLifetimeDefault>>,
}
/// See `NamedRegionMap`.
pub struct ResolveLifetimes {
defs: FxHashMap<LocalDefId, Rc<FxHashMap<ItemLocalId, Region>>>,
late_bound: FxHashMap<LocalDefId, Rc<FxHashSet<ItemLocalId>>>,
object_lifetime_defaults:
FxHashMap<LocalDefId, Rc<FxHashMap<ItemLocalId, Rc<Vec<ObjectLifetimeDefault>>>>>,
}
impl_stable_hash_for!(struct ::middle::resolve_lifetime::ResolveLifetimes {
defs,
late_bound,
object_lifetime_defaults
});
struct LifetimeContext<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
map: &'a mut NamedRegionMap,
scope: ScopeRef<'a>,
// Deep breath. Our representation for poly trait refs contains a single
// binder and thus we only allow a single level of quantification. However,
// the syntax of Rust permits quantification in two places, e.g., `T: for <'a> Foo<'a>`
// and `for <'a, 'b> &'b T: Foo<'a>`. In order to get the de Bruijn indices
// correct when representing these constraints, we should only introduce one
// scope. However, we want to support both locations for the quantifier and
// during lifetime resolution we want precise information (so we can't
// desugar in an earlier phase).
// SO, if we encounter a quantifier at the outer scope, we set
// trait_ref_hack to true (and introduce a scope), and then if we encounter
// a quantifier at the inner scope, we error. If trait_ref_hack is false,
// then we introduce the scope at the inner quantifier.
// I'm sorry.
trait_ref_hack: bool,
// Used to disallow the use of in-band lifetimes in `fn` or `Fn` syntax.
is_in_fn_syntax: bool,
// List of labels in the function/method currently under analysis.
labels_in_fn: Vec<(ast::Name, Span)>,
// Cache for cross-crate per-definition object lifetime defaults.
xcrate_object_lifetime_defaults: DefIdMap<Vec<ObjectLifetimeDefault>>,
lifetime_uses: DefIdMap<LifetimeUseSet<'tcx>>,
}
#[derive(Debug)]
enum Scope<'a> {
/// Declares lifetimes, and each can be early-bound or late-bound.
/// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
/// it should be shifted by the number of `Binder`s in between the
/// declaration `Binder` and the location it's referenced from.
Binder {
lifetimes: FxHashMap<hir::LifetimeName, Region>,
/// if we extend this scope with another scope, what is the next index
/// we should use for an early-bound region?
next_early_index: u32,
s: ScopeRef<'a>,
},
/// Lifetimes introduced by a fn are scoped to the call-site for that fn,
/// if this is a fn body, otherwise the original definitions are used.
/// Unspecified lifetimes are inferred, unless an elision scope is nested,
/// e.g. `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
Body {
id: hir::BodyId,
s: ScopeRef<'a>,
},
/// A scope which either determines unspecified lifetimes or errors
/// on them (e.g. due to ambiguity). For more details, see `Elide`.
Elision {
elide: Elide,
s: ScopeRef<'a>,
},
/// Use a specific lifetime (if `Some`) or leave it unset (to be
/// inferred in a function body or potentially error outside one),
/// for the default choice of lifetime in a trait object type.
ObjectLifetimeDefault {
lifetime: Option<Region>,
s: ScopeRef<'a>,
},
Root,
}
#[derive(Clone, Debug)]
enum Elide {
/// Use a fresh anonymous late-bound lifetime each time, by
/// incrementing the counter to generate sequential indices.
FreshLateAnon(Cell<u32>),
/// Always use this one lifetime.
Exact(Region),
/// Less or more than one lifetime were found, error on unspecified.
Error(Vec<ElisionFailureInfo>),
}
#[derive(Clone, Debug)]
struct ElisionFailureInfo {
/// Where we can find the argument pattern.
parent: Option<hir::BodyId>,
/// The index of the argument in the original definition.
index: usize,
lifetime_count: usize,
have_bound_regions: bool,
}
type ScopeRef<'a> = &'a Scope<'a>;
const ROOT_SCOPE: ScopeRef<'static> = &Scope::Root;
pub fn provide(providers: &mut ty::maps::Providers) {
*providers = ty::maps::Providers {
resolve_lifetimes,
named_region_map: |tcx, id| {
let id = LocalDefId::from_def_id(DefId::local(id)); // (*)
tcx.resolve_lifetimes(LOCAL_CRATE).defs.get(&id).cloned()
},
is_late_bound_map: |tcx, id| {
let id = LocalDefId::from_def_id(DefId::local(id)); // (*)
tcx.resolve_lifetimes(LOCAL_CRATE)
.late_bound
.get(&id)
.cloned()
},
object_lifetime_defaults_map: |tcx, id| {
let id = LocalDefId::from_def_id(DefId::local(id)); // (*)
tcx.resolve_lifetimes(LOCAL_CRATE)
.object_lifetime_defaults
.get(&id)
.cloned()
},
..*providers
};
// (*) FIXME the query should be defined to take a LocalDefId
}
/// Computes the `ResolveLifetimes` map that contains data for the
/// entire crate. You should not read the result of this query
/// directly, but rather use `named_region_map`, `is_late_bound_map`,
/// etc.
fn resolve_lifetimes<'tcx>(
tcx: TyCtxt<'_, 'tcx, 'tcx>,
for_krate: CrateNum,
) -> Rc<ResolveLifetimes> {
assert_eq!(for_krate, LOCAL_CRATE);
let named_region_map = krate(tcx);
let mut defs = FxHashMap();
for (k, v) in named_region_map.defs {
let hir_id = tcx.hir.node_to_hir_id(k);
let map = defs.entry(hir_id.owner_local_def_id())
.or_insert_with(|| Rc::new(FxHashMap()));
Rc::get_mut(map).unwrap().insert(hir_id.local_id, v);
}
let mut late_bound = FxHashMap();
for k in named_region_map.late_bound {
let hir_id = tcx.hir.node_to_hir_id(k);
let map = late_bound
.entry(hir_id.owner_local_def_id())
.or_insert_with(|| Rc::new(FxHashSet()));
Rc::get_mut(map).unwrap().insert(hir_id.local_id);
}
let mut object_lifetime_defaults = FxHashMap();
for (k, v) in named_region_map.object_lifetime_defaults {
let hir_id = tcx.hir.node_to_hir_id(k);
let map = object_lifetime_defaults
.entry(hir_id.owner_local_def_id())
.or_insert_with(|| Rc::new(FxHashMap()));
Rc::get_mut(map)
.unwrap()
.insert(hir_id.local_id, Rc::new(v));
}
Rc::new(ResolveLifetimes {
defs,
late_bound,
object_lifetime_defaults,
})
}
fn krate<'tcx>(tcx: TyCtxt<'_, 'tcx, 'tcx>) -> NamedRegionMap {
let krate = tcx.hir.krate();
let mut map = NamedRegionMap {
defs: NodeMap(),
late_bound: NodeSet(),
object_lifetime_defaults: compute_object_lifetime_defaults(tcx),
};
{
let mut visitor = LifetimeContext {
tcx,
map: &mut map,
scope: ROOT_SCOPE,
trait_ref_hack: false,
is_in_fn_syntax: false,
labels_in_fn: vec![],
xcrate_object_lifetime_defaults: DefIdMap(),
lifetime_uses: DefIdMap(),
};
for (_, item) in &krate.items {
visitor.visit_item(item);
}
}
map
}
impl<'a, 'tcx> Visitor<'tcx> for LifetimeContext<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
// We want to nest trait/impl items in their parent, but nothing else.
fn visit_nested_item(&mut self, _: hir::ItemId) {}
fn visit_nested_body(&mut self, body: hir::BodyId) {
// Each body has their own set of labels, save labels.
let saved = replace(&mut self.labels_in_fn, vec![]);
let body = self.tcx.hir.body(body);
extract_labels(self, body);
self.with(
Scope::Body {
id: body.id(),
s: self.scope,
},
|_, this| {
this.visit_body(body);
},
);
replace(&mut self.labels_in_fn, saved);
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
match item.node {
hir::ItemFn(ref decl, _, _, _, ref generics, _) => {
self.visit_early_late(None,
decl,
generics,
|this| {
intravisit::walk_item(this, item);
});
}
hir::ItemExternCrate(_)
| hir::ItemUse(..)
| hir::ItemMod(..)
| hir::ItemForeignMod(..)
| hir::ItemGlobalAsm(..) => {
// These sorts of items have no lifetime parameters at all.
intravisit::walk_item(self, item);
}
hir::ItemStatic(..) | hir::ItemConst(..) => {
// No lifetime parameters, but implied 'static.
let scope = Scope::Elision {
elide: Elide::Exact(Region::Static),
s: ROOT_SCOPE,
};
self.with(scope, |_, this| intravisit::walk_item(this, item));
}
hir::ItemTy(_, ref generics)
| hir::ItemEnum(_, ref generics)
| hir::ItemStruct(_, ref generics)
| hir::ItemUnion(_, ref generics)
| hir::ItemTrait(_, _, ref generics, ..)
| hir::ItemTraitAlias(ref generics, ..)
| hir::ItemImpl(_, _, _, ref generics, ..) => {
// These kinds of items have only early bound lifetime parameters.
let mut index = if let hir::ItemTrait(..) = item.node {
1 // Self comes before lifetimes
} else {
0
};
let lifetimes = generics.lifetimes()
.map(|def| Region::early(&self.tcx.hir, &mut index, def))
.collect();
let next_early_index = index + generics.ty_params().count() as u32;
let scope = Scope::Binder {
lifetimes,
next_early_index,
s: ROOT_SCOPE,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &generics.params);
intravisit::walk_item(this, item);
});
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem) {
match item.node {
hir::ForeignItemFn(ref decl, _, ref generics) => {
self.visit_early_late(None,
decl,
generics,
|this| {
intravisit::walk_foreign_item(this, item);
})
}
hir::ForeignItemStatic(..) => {
intravisit::walk_foreign_item(self, item);
}
hir::ForeignItemType => {
intravisit::walk_foreign_item(self, item);
}
}
}
fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
debug!("visit_ty: ty={:?}", ty);
match ty.node {
hir::TyBareFn(ref c) => {
let next_early_index = self.next_early_index();
let was_in_fn_syntax = self.is_in_fn_syntax;
self.is_in_fn_syntax = true;
let scope = Scope::Binder {
lifetimes: c.generic_params
.lifetimes()
.map(|def| Region::late(&self.tcx.hir, def))
.collect(),
s: self.scope,
next_early_index,
};
self.with(scope, |old_scope, this| {
// a bare fn has no bounds, so everything
// contained within is scoped within its binder.
this.check_lifetime_params(old_scope, &c.generic_params);
intravisit::walk_ty(this, ty);
});
self.is_in_fn_syntax = was_in_fn_syntax;
}
hir::TyTraitObject(ref bounds, ref lifetime) => {
for bound in bounds {
self.visit_poly_trait_ref(bound, hir::TraitBoundModifier::None);
}
if lifetime.is_elided() {
self.resolve_object_lifetime_default(lifetime)
} else {
self.visit_lifetime(lifetime);
}
}
hir::TyRptr(ref lifetime_ref, ref mt) => {
self.visit_lifetime(lifetime_ref);
let scope = Scope::ObjectLifetimeDefault {
lifetime: self.map.defs.get(&lifetime_ref.id).cloned(),
s: self.scope,
};
self.with(scope, |_, this| this.visit_ty(&mt.ty));
}
hir::TyImplTraitExistential(ref exist_ty, ref lifetimes) => {
// Resolve the lifetimes that are applied to the existential type.
// These are resolved in the current scope.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `fn foo<'a>() -> MyAnonTy<'a> { ... }`
// ^ ^this gets resolved in the current scope
for lifetime in lifetimes {
self.visit_lifetime(lifetime);
// Check for predicates like `impl for<'a> SomeTrait<impl OtherTrait<'a>>`
// and ban them. Type variables instantiated inside binders aren't
// well-supported at the moment, so this doesn't work.
// In the future, this should be fixed and this error should be removed.
let def = self.map.defs.get(&lifetime.id);
if let Some(&Region::LateBound(_, def_id, _)) = def {
if let Some(node_id) = self.tcx.hir.as_local_node_id(def_id) {
// Ensure that the parent of the def is an item, not HRTB
let parent_id = self.tcx.hir.get_parent_node(node_id);
let parent_impl_id = hir::ImplItemId { node_id: parent_id };
let parent_trait_id = hir::TraitItemId { node_id: parent_id };
let krate = self.tcx.hir.forest.krate();
if !(krate.items.contains_key(&parent_id)
|| krate.impl_items.contains_key(&parent_impl_id)
|| krate.trait_items.contains_key(&parent_trait_id))
{
span_err!(
self.tcx.sess,
lifetime.span,
E0657,
"`impl Trait` can only capture lifetimes \
bound at the fn or impl level"
);
}
}
}
}
// Resolve the lifetimes in the bounds to the lifetime defs in the generics.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `abstract type MyAnonTy<'b>: MyTrait<'b>;`
// ^ ^ this gets resolved in the scope of
// the exist_ty generics
let hir::ExistTy {
ref generics,
ref bounds,
} = *exist_ty;
let mut index = self.next_early_index();
debug!("visit_ty: index = {}", index);
let mut elision = None;
let mut lifetimes = FxHashMap();
for lt_def in generics.lifetimes() {
let (lt_name, region) = Region::early(&self.tcx.hir, &mut index, <_def);
if let hir::LifetimeName::Underscore = lt_name {
// Pick the elided lifetime "definition" if one exists and use it to make an
// elision scope.
elision = Some(region);
} else {
lifetimes.insert(lt_name, region);
}
}
let next_early_index = index + generics.ty_params().count() as u32;
if let Some(elision_region) = elision {
let scope = Scope::Elision {
elide: Elide::Exact(elision_region),
s: self.scope
};
self.with(scope, |_old_scope, this| {
let scope = Scope::Binder { lifetimes, next_early_index, s: this.scope };
this.with(scope, |_old_scope, this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_ty_param_bound(bound);
}
});
});
} else {
let scope = Scope::Binder { lifetimes, next_early_index, s: self.scope };
self.with(scope, |_old_scope, this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_ty_param_bound(bound);
}
});
}
}
_ => intravisit::walk_ty(self, ty),
}
}
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
use self::hir::TraitItemKind::*;
match trait_item.node {
Method(ref sig, _) => {
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir.get_parent(trait_item.id)),
&sig.decl,
&trait_item.generics,
|this| intravisit::walk_trait_item(this, trait_item),
);
},
Type(ref bounds, ref ty) => {
let generics = &trait_item.generics;
let mut index = self.next_early_index();
debug!("visit_ty: index = {}", index);
let lifetimes = generics.lifetimes()
.map(|lt_def| Region::early(&self.tcx.hir, &mut index, lt_def))
.collect();
let next_early_index = index + generics.ty_params().count() as u32;
let scope = Scope::Binder { lifetimes, next_early_index, s: self.scope };
self.with(scope, |_old_scope, this| {
this.visit_generics(generics);
for bound in bounds {
this.visit_ty_param_bound(bound);
}
if let Some(ty) = ty {
this.visit_ty(ty);
}
});
},
Const(_, _) => {
// Only methods and types support generics.
assert!(trait_item.generics.params.is_empty());
intravisit::walk_trait_item(self, trait_item);
},
}
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
use self::hir::ImplItemKind::*;
match impl_item.node {
Method(ref sig, _) => {
let tcx = self.tcx;
self.visit_early_late(
Some(tcx.hir.get_parent(impl_item.id)),
&sig.decl,
&impl_item.generics,
|this| intravisit::walk_impl_item(this, impl_item),
)
},
Type(ref ty) => {
let generics = &impl_item.generics;
let mut index = self.next_early_index();
debug!("visit_ty: index = {}", index);
let lifetimes = generics.lifetimes()
.map(|lt_def| Region::early(&self.tcx.hir, &mut index, lt_def))
.collect();
let next_early_index = index + generics.ty_params().count() as u32;
let scope = Scope::Binder { lifetimes, next_early_index, s: self.scope };
self.with(scope, |_old_scope, this| {
this.visit_generics(generics);
this.visit_ty(ty);
});
},
Const(_, _) => {
// Only methods and types support generics.
assert!(impl_item.generics.params.is_empty());
intravisit::walk_impl_item(self, impl_item);
},
}
}
fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
if lifetime_ref.is_elided() {
self.resolve_elided_lifetimes(slice::from_ref(lifetime_ref));
return;
}
if lifetime_ref.is_static() {
self.insert_lifetime(lifetime_ref, Region::Static);
return;
}
self.resolve_lifetime_ref(lifetime_ref);
}
fn visit_path(&mut self, path: &'tcx hir::Path, _: ast::NodeId) {
for (i, segment) in path.segments.iter().enumerate() {
let depth = path.segments.len() - i - 1;
if let Some(ref parameters) = segment.parameters {
self.visit_segment_parameters(path.def, depth, parameters);
}
}
}
fn visit_fn_decl(&mut self, fd: &'tcx hir::FnDecl) {
let output = match fd.output {
hir::DefaultReturn(_) => None,
hir::Return(ref ty) => Some(ty),
};
self.visit_fn_like_elision(&fd.inputs, output);
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
check_mixed_explicit_and_in_band_defs(
self.tcx,
&generics.lifetimes().cloned().collect::<Vec<_>>()
);
for ty_param in generics.ty_params() {
walk_list!(self, visit_ty_param_bound, &ty_param.bounds);
if let Some(ref ty) = ty_param.default {
self.visit_ty(&ty);
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
ref bounded_ty,
ref bounds,
ref bound_generic_params,
..
}) => {
if bound_generic_params.iter().any(|p| p.is_lifetime_param()) {
self.trait_ref_hack = true;
let next_early_index = self.next_early_index();
let scope = Scope::Binder {
lifetimes: bound_generic_params.lifetimes()
.map(|def| Region::late(&self.tcx.hir, def))
.collect(),
s: self.scope,
next_early_index,
};
let result = self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &bound_generic_params);
this.visit_ty(&bounded_ty);
walk_list!(this, visit_ty_param_bound, bounds);
});
self.trait_ref_hack = false;
result
} else {
self.visit_ty(&bounded_ty);
walk_list!(self, visit_ty_param_bound, bounds);
}
}
&hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
ref lifetime,
ref bounds,
..
}) => {
self.visit_lifetime(lifetime);
for bound in bounds {
self.visit_lifetime(bound);
}
}
&hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
ref lhs_ty,
ref rhs_ty,
..
}) => {
self.visit_ty(lhs_ty);
self.visit_ty(rhs_ty);
}
}
}
}
fn visit_poly_trait_ref(
&mut self,
trait_ref: &'tcx hir::PolyTraitRef,
_modifier: hir::TraitBoundModifier,
) {
debug!("visit_poly_trait_ref trait_ref={:?}", trait_ref);
if !self.trait_ref_hack ||
trait_ref.bound_generic_params.iter().any(|p| p.is_lifetime_param())
{
if self.trait_ref_hack {
span_err!(
self.tcx.sess,
trait_ref.span,
E0316,
"nested quantification of lifetimes"
);
}
let next_early_index = self.next_early_index();
let scope = Scope::Binder {
lifetimes: trait_ref.bound_generic_params
.lifetimes()
.map(|def| Region::late(&self.tcx.hir, def))
.collect(),
s: self.scope,
next_early_index,
};
self.with(scope, |old_scope, this| {
this.check_lifetime_params(old_scope, &trait_ref.bound_generic_params);
walk_list!(this, visit_generic_param, &trait_ref.bound_generic_params);
this.visit_trait_ref(&trait_ref.trait_ref)
})
} else {
self.visit_trait_ref(&trait_ref.trait_ref)
}
}
}
#[derive(Copy, Clone, PartialEq)]
enum ShadowKind {
Label,
Lifetime,
}
struct Original {
kind: ShadowKind,
span: Span,
}
struct Shadower {
kind: ShadowKind,
span: Span,
}
fn original_label(span: Span) -> Original {
Original {
kind: ShadowKind::Label,
span: span,
}
}
fn shadower_label(span: Span) -> Shadower {
Shadower {
kind: ShadowKind::Label,
span: span,
}
}
fn original_lifetime(span: Span) -> Original {
Original {
kind: ShadowKind::Lifetime,
span: span,
}
}
fn shadower_lifetime(l: &hir::Lifetime) -> Shadower {
Shadower {
kind: ShadowKind::Lifetime,
span: l.span,
}
}
impl ShadowKind {
fn desc(&self) -> &'static str {
match *self {
ShadowKind::Label => "label",
ShadowKind::Lifetime => "lifetime",
}
}
}
fn check_mixed_explicit_and_in_band_defs(
tcx: TyCtxt<'_, '_, '_>,
lifetime_defs: &[hir::LifetimeDef],
) {
let oob_def = lifetime_defs.iter().find(|lt| !lt.in_band);
let in_band_def = lifetime_defs.iter().find(|lt| lt.in_band);
if let (Some(oob_def), Some(in_band_def)) = (oob_def, in_band_def) {
struct_span_err!(
tcx.sess,
in_band_def.lifetime.span,
E0688,
"cannot mix in-band and explicit lifetime definitions"
).span_label(
in_band_def.lifetime.span,
"in-band lifetime definition here",
)
.span_label(oob_def.lifetime.span, "explicit lifetime definition here")
.emit();
}
}
fn signal_shadowing_problem(
tcx: TyCtxt<'_, '_, '_>,
name: ast::Name,
orig: Original,
shadower: Shadower,
) {
let mut err = if let (ShadowKind::Lifetime, ShadowKind::Lifetime) = (orig.kind, shadower.kind) {
// lifetime/lifetime shadowing is an error
struct_span_err!(
tcx.sess,
shadower.span,
E0496,
"{} name `{}` shadows a \
{} name that is already in scope",
shadower.kind.desc(),
name,
orig.kind.desc()
)
} else {
// shadowing involving a label is only a warning, due to issues with
// labels and lifetimes not being macro-hygienic.
tcx.sess.struct_span_warn(
shadower.span,
&format!(
"{} name `{}` shadows a \
{} name that is already in scope",
shadower.kind.desc(),
name,
orig.kind.desc()
),
)
};
err.span_label(orig.span, "first declared here");
err.span_label(shadower.span, format!("lifetime {} already in scope", name));
err.emit();
}
// Adds all labels in `b` to `ctxt.labels_in_fn`, signalling a warning
// if one of the label shadows a lifetime or another label.
fn extract_labels(ctxt: &mut LifetimeContext<'_, '_>, body: &hir::Body) {
struct GatherLabels<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
scope: ScopeRef<'a>,
labels_in_fn: &'a mut Vec<(ast::Name, Span)>,
}
let mut gather = GatherLabels {
tcx: ctxt.tcx,
scope: ctxt.scope,
labels_in_fn: &mut ctxt.labels_in_fn,
};
gather.visit_body(body);
impl<'v, 'a, 'tcx> Visitor<'v> for GatherLabels<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'v> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, ex: &hir::Expr) {
if let Some((label, label_span)) = expression_label(ex) {
for &(prior, prior_span) in &self.labels_in_fn[..] {
// FIXME (#24278): non-hygienic comparison
if label == prior {