-
Notifications
You must be signed in to change notification settings - Fork 13k
/
Copy pathgraph.rs
1110 lines (974 loc) · 42.4 KB
/
graph.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use errors::DiagnosticBuilder;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use smallvec::SmallVec;
use rustc_data_structures::sync::{Lrc, Lock};
use std::env;
use std::hash::Hash;
use std::collections::hash_map::Entry;
use ty::{self, TyCtxt};
use util::common::{ProfileQueriesMsg, profq_msg};
use ich::{StableHashingContext, StableHashingContextProvider, Fingerprint};
use super::debug::EdgeFilter;
use super::dep_node::{DepNode, DepKind, WorkProductId};
use super::query::DepGraphQuery;
use super::safe::DepGraphSafe;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::prev::PreviousDepGraph;
#[derive(Clone)]
pub struct DepGraph {
data: Option<Lrc<DepGraphData>>,
}
newtype_index! {
pub struct DepNodeIndex { .. }
}
impl DepNodeIndex {
const INVALID: DepNodeIndex = DepNodeIndex::MAX;
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex)
}
impl DepNodeColor {
pub fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
struct DepGraphData {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore.
current: Lock<CurrentDepGraph>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph,
colors: Lock<DepNodeColorMap>,
/// When we load, there may be `.o` files, cached mir, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
dep_node_debug: Lock<FxHashMap<DepNode, String>>,
// Used for testing, only populated when -Zquery-dep-graph is specified.
loaded_from_cache: Lock<FxHashMap<DepNodeIndex, bool>>,
}
impl DepGraph {
pub fn new(prev_graph: PreviousDepGraph,
prev_work_products: FxHashMap<WorkProductId, WorkProduct>) -> DepGraph {
let prev_graph_node_count = prev_graph.node_count();
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Default::default(),
current: Lock::new(CurrentDepGraph::new(prev_graph_node_count)),
previous: prev_graph,
colors: Lock::new(DepNodeColorMap::new(prev_graph_node_count)),
loaded_from_cache: Default::default(),
})),
}
}
pub fn new_disabled() -> DepGraph {
DepGraph {
data: None,
}
}
/// True if we are actually building the full dep-graph.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
let nodes: Vec<_> = current_dep_graph.data.iter().map(|n| n.node).collect();
let mut edges = Vec::new();
for (from, edge_targets) in current_dep_graph.data.iter()
.map(|d| (d.node, &d.edges)) {
for &edge_target in edge_targets.iter() {
let to = current_dep_graph.data[edge_target].node;
edges.push((from, to));
}
}
DepGraphQuery::new(&nodes[..], &edges[..])
}
pub fn assert_ignored(&self)
{
if let Some(..) = self.data {
ty::tls::with_context_opt(|icx| {
let icx = if let Some(icx) = icx { icx } else { return };
match *icx.task {
OpenTask::Ignore => {
// ignored
}
_ => panic!("expected an ignore context")
}
})
}
}
pub fn with_ignore<OP,R>(&self, op: OP) -> R
where OP: FnOnce() -> R
{
ty::tls::with_context(|icx| {
let icx = ty::tls::ImplicitCtxt {
task: &OpenTask::Ignore,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
op()
})
})
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc guide]: https://rust-lang.github.io/rustc-guide/incremental-compilation.html
pub fn with_task<'gcx, C, A, R>(&self,
key: DepNode,
cx: C,
arg: A,
task: fn(C, A) -> R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
self.with_task_impl(key, cx, arg, false, task,
|key| OpenTask::Regular(Lock::new(RegularOpenTask {
node: key,
reads: SmallVec::new(),
read_set: Default::default(),
})),
|data, key, fingerprint, task| data.borrow_mut().complete_task(key, task, fingerprint))
}
/// Creates a new dep-graph input with value `input`
pub fn input_task<'gcx, C, R>(&self,
key: DepNode,
cx: C,
input: R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
fn identity_fn<C, A>(_: C, arg: A) -> A {
arg
}
self.with_task_impl(key, cx, input, true, identity_fn,
|_| OpenTask::Ignore,
|data, key, fingerprint, _| {
data.borrow_mut().alloc_node(key, SmallVec::new(), fingerprint)
})
}
fn with_task_impl<'gcx, C, A, R>(
&self,
key: DepNode,
cx: C,
arg: A,
no_tcx: bool,
task: fn(C, A) -> R,
create_task: fn(DepNode) -> OpenTask,
finish_task_and_alloc_depnode: fn(&Lock<CurrentDepGraph>,
DepNode,
Fingerprint,
OpenTask) -> DepNodeIndex
) -> (R, DepNodeIndex)
where
C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
if let Some(ref data) = self.data {
let open_task = create_task(key);
// In incremental mode, hash the result of the task. We don't
// do anything with the hash yet, but we are computing it
// anyway so that
// - we make sure that the infrastructure works and
// - we can get an idea of the runtime cost.
let mut hcx = cx.get_stable_hashing_context();
if cfg!(debug_assertions) {
profq_msg(hcx.sess(), ProfileQueriesMsg::TaskBegin(key.clone()))
};
let result = if no_tcx {
task(cx, arg)
} else {
ty::tls::with_context(|icx| {
let icx = ty::tls::ImplicitCtxt {
task: &open_task,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
task(cx, arg)
})
})
};
if cfg!(debug_assertions) {
profq_msg(hcx.sess(), ProfileQueriesMsg::TaskEnd)
};
let mut stable_hasher = StableHasher::new();
result.hash_stable(&mut hcx, &mut stable_hasher);
let current_fingerprint = stable_hasher.finish();
let dep_node_index = finish_task_and_alloc_depnode(
&data.current,
key,
current_fingerprint,
open_task
);
// Determine the color of the new DepNode.
if let Some(prev_index) = data.previous.node_to_index_opt(&key) {
let prev_fingerprint = data.previous.fingerprint_by_index(prev_index);
let color = if current_fingerprint == prev_fingerprint {
DepNodeColor::Green(dep_node_index)
} else {
DepNodeColor::Red
};
let mut colors = data.colors.borrow_mut();
debug_assert!(colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {:?}", key);
colors.insert(prev_index, color);
}
(result, dep_node_index)
} else {
(task(cx, arg), DepNodeIndex::INVALID)
}
}
/// Execute something within an "anonymous" task, that is, a task the
/// DepNode of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP,R>(&self, dep_kind: DepKind, op: OP) -> (R, DepNodeIndex)
where OP: FnOnce() -> R
{
if let Some(ref data) = self.data {
let (result, open_task) = ty::tls::with_context(|icx| {
let task = OpenTask::Anon(Lock::new(AnonOpenTask {
reads: SmallVec::new(),
read_set: Default::default(),
}));
let r = {
let icx = ty::tls::ImplicitCtxt {
task: &task,
..icx.clone()
};
ty::tls::enter_context(&icx, |_| {
op()
})
};
(r, task)
});
let dep_node_index = data.current
.borrow_mut()
.pop_anon_task(dep_kind, open_task);
(result, dep_node_index)
} else {
(op(), DepNodeIndex::INVALID)
}
}
/// Execute something within an "eval-always" task which is a task
// that runs whenever anything changes.
pub fn with_eval_always_task<'gcx, C, A, R>(&self,
key: DepNode,
cx: C,
arg: A,
task: fn(C, A) -> R)
-> (R, DepNodeIndex)
where C: DepGraphSafe + StableHashingContextProvider<'gcx>,
R: HashStable<StableHashingContext<'gcx>>,
{
self.with_task_impl(key, cx, arg, false, task,
|key| OpenTask::EvalAlways { node: key },
|data, key, fingerprint, task| {
data.borrow_mut().complete_eval_always_task(key, task, fingerprint)
})
}
#[inline]
pub fn read(&self, v: DepNode) {
if let Some(ref data) = self.data {
let mut current = data.current.borrow_mut();
if let Some(&dep_node_index) = current.node_to_node_index.get(&v) {
current.read_index(dep_node_index);
} else {
bug!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
}
}
}
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
data.current.borrow_mut().read_index(dep_node_index);
}
}
#[inline]
pub fn dep_node_index_of(&self, dep_node: &DepNode) -> DepNodeIndex {
self.data
.as_ref()
.unwrap()
.current
.borrow_mut()
.node_to_node_index
.get(dep_node)
.cloned()
.unwrap()
}
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode) -> bool {
if let Some(ref data) = self.data {
data.current.borrow_mut().node_to_node_index.contains_key(dep_node)
} else {
false
}
}
#[inline]
pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint {
let current = self.data.as_ref().expect("dep graph enabled").current.borrow_mut();
current.data[dep_node_index].fingerprint
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
#[inline]
pub fn prev_dep_node_index_of(&self, dep_node: &DepNode) -> SerializedDepNodeIndex {
self.data.as_ref().unwrap().previous.node_to_index(dep_node)
}
/// Check whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data
.as_ref()
.and_then(|data| {
data.previous_work_products.get(v).cloned()
})
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
&self.data.as_ref().unwrap().previous_work_products
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self,
dep_node: DepNode,
debug_str_gen: F)
where F: FnOnce() -> String
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub(super) fn dep_node_debug_str(&self, dep_node: DepNode) -> Option<String> {
self.data
.as_ref()?
.dep_node_debug
.borrow()
.get(&dep_node)
.cloned()
}
pub fn edge_deduplication_data(&self) -> (u64, u64) {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
(current_dep_graph.total_read_count, current_dep_graph.total_duplicate_read_count)
}
pub fn serialize(&self) -> SerializedDepGraph {
let current_dep_graph = self.data.as_ref().unwrap().current.borrow();
let fingerprints: IndexVec<SerializedDepNodeIndex, _> =
current_dep_graph.data.iter().map(|d| d.fingerprint).collect();
let nodes: IndexVec<SerializedDepNodeIndex, _> =
current_dep_graph.data.iter().map(|d| d.node).collect();
let total_edge_count: usize = current_dep_graph.data.iter()
.map(|d| d.edges.len())
.sum();
let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
let mut edge_list_data = Vec::with_capacity(total_edge_count);
for (current_dep_node_index, edges) in current_dep_graph.data.iter_enumerated()
.map(|(i, d)| (i, &d.edges)) {
let start = edge_list_data.len() as u32;
// This should really just be a memcpy :/
edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index())));
let end = edge_list_data.len() as u32;
debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
edge_list_indices.push((start, end));
}
debug_assert!(edge_list_data.len() <= ::std::u32::MAX as usize);
debug_assert_eq!(edge_list_data.len(), total_edge_count);
SerializedDepGraph {
nodes,
fingerprints,
edge_list_indices,
edge_list_data,
}
}
pub fn node_color(&self, dep_node: &DepNode) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
return data.colors.borrow().get(prev_index)
} else {
// This is a node that did not exist in the previous compilation
// session, so we consider it to be red.
return Some(DepNodeColor::Red)
}
}
None
}
pub fn try_mark_green<'tcx>(&self,
tcx: TyCtxt<'_, 'tcx, 'tcx>,
dep_node: &DepNode)
-> Option<DepNodeIndex> {
debug!("try_mark_green({:?}) - BEGIN", dep_node);
let data = self.data.as_ref().unwrap();
#[cfg(not(parallel_queries))]
debug_assert!(!data.current.borrow().node_to_node_index.contains_key(dep_node));
if dep_node.kind.is_input() {
// We should only hit try_mark_green() for inputs that do not exist
// anymore in the current compilation session. Existing inputs are
// eagerly marked as either red/green before any queries are
// executed.
debug_assert!(dep_node.extract_def_id(tcx).is_none());
debug!("try_mark_green({:?}) - END - DepNode is deleted input", dep_node);
return None;
}
let (prev_deps, prev_dep_node_index) = match data.previous.edges_from(dep_node) {
Some(prev) => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
prev
}
None => {
// This DepNode did not exist in the previous compilation session,
// so we cannot mark it as green.
debug!("try_mark_green({:?}) - END - DepNode does not exist in \
current compilation session anymore", dep_node);
return None
}
};
debug_assert!(data.colors.borrow().get(prev_dep_node_index).is_none());
let mut current_deps = SmallVec::new();
for &dep_dep_node_index in prev_deps {
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!("try_mark_green({:?}) --- found dependency {:?} to \
be immediately green",
dep_node,
data.previous.index_to_node(dep_dep_node_index));
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!("try_mark_green({:?}) - END - dependency {:?} was \
immediately red",
dep_node,
data.previous.index_to_node(dep_dep_node_index));
return None
}
None => {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
// We don't know the state of this dependency. If it isn't
// an input node, let's try to mark it green recursively.
if !dep_dep_node.kind.is_input() {
debug!("try_mark_green({:?}) --- state of dependency {:?} \
is unknown, trying to mark it green", dep_node,
dep_dep_node);
if let Some(node_index) = self.try_mark_green(tcx, dep_dep_node) {
debug!("try_mark_green({:?}) --- managed to MARK \
dependency {:?} as green", dep_node, dep_dep_node);
current_deps.push(node_index);
continue;
}
} else {
match dep_dep_node.kind {
DepKind::Hir |
DepKind::HirBody |
DepKind::CrateMetadata => {
if dep_node.extract_def_id(tcx).is_none() {
// If the node does not exist anymore, we
// just fail to mark green.
return None
} else {
// If the node does exist, it should have
// been pre-allocated.
bug!("DepNode {:?} should have been \
pre-allocated but wasn't.",
dep_dep_node)
}
}
_ => {
// For other kinds of inputs it's OK to be
// forced.
}
}
}
// We failed to mark it green, so we try to force the query.
debug!("try_mark_green({:?}) --- trying to force \
dependency {:?}", dep_node, dep_dep_node);
if ::ty::query::force_from_dep_node(tcx, dep_dep_node) {
let dep_dep_node_color = data.colors.borrow().get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
debug!("try_mark_green({:?}) --- managed to \
FORCE dependency {:?} to green",
dep_node, dep_dep_node);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
debug!("try_mark_green({:?}) - END - \
dependency {:?} was red after forcing",
dep_node,
dep_dep_node);
return None
}
None => {
if !tcx.sess.has_errors() {
bug!("try_mark_green() - Forcing the DepNode \
should have set its color")
} else {
// If the query we just forced has resulted
// in some kind of compilation error, we
// don't expect that the corresponding
// dep-node color has been updated.
}
}
}
} else {
// The DepNode could not be forced.
debug!("try_mark_green({:?}) - END - dependency {:?} \
could not be forced", dep_node, dep_dep_node);
return None
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
let (dep_node_index, did_allocation) = {
let mut current = data.current.borrow_mut();
// Copy the fingerprint from the previous graph,
// so we don't have to recompute it
let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
current.intern_node(*dep_node, current_deps, fingerprint)
};
// ... emitting any stored diagnostic ...
if did_allocation {
// Only the thread which did the allocation emits the error messages
// FIXME: Ensure that these are printed before returning for all threads.
// Currently threads where did_allocation = false can continue on
// and emit other diagnostics before these diagnostics are emitted.
// Such diagnostics should be emitted after these.
// See https://github.com/rust-lang/rust/issues/48685
let diagnostics = tcx.queries.on_disk_cache
.load_diagnostics(tcx, prev_dep_node_index);
if diagnostics.len() > 0 {
let handle = tcx.sess.diagnostic();
// Promote the previous diagnostics to the current session.
tcx.queries.on_disk_cache
.store_diagnostics(dep_node_index, diagnostics.clone());
for diagnostic in diagnostics {
DiagnosticBuilder::new_diagnostic(handle, diagnostic).emit();
}
}
}
// ... and finally storing a "Green" entry in the color map.
let mut colors = data.colors.borrow_mut();
// Multiple threads can all write the same color here
#[cfg(not(parallel_queries))]
debug_assert!(colors.get(prev_dep_node_index).is_none(),
"DepGraph::try_mark_green() - Duplicate DepNodeColor \
insertion for {:?}", dep_node);
colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("try_mark_green({:?}) - END - successfully marked as green", dep_node);
Some(dep_node_index)
}
// Returns true if the given node has been marked as green during the
// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode) -> bool {
self.node_color(dep_node).map(|c| c.is_green()).unwrap_or(false)
}
// This method loads all on-disk cacheable query results into memory, so
// they can be written out to the new cache file again. Most query results
// will already be in memory but in the case where we marked something as
// green but then did not need the value, that value will never have been
// loaded from disk.
//
// This method will only load queries that will end up in the disk cache.
// Other queries will not be executed.
pub fn exec_cache_promotions<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let green_nodes: Vec<DepNode> = {
let data = self.data.as_ref().unwrap();
let colors = data.colors.borrow();
colors.values.indices().filter_map(|prev_index| {
match colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
if dep_node.cache_on_disk(tcx) {
Some(dep_node)
} else {
None
}
}
None |
Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
None
}
}
}).collect()
};
for dep_node in green_nodes {
dep_node.load_from_on_disk_cache(tcx);
}
}
pub fn mark_loaded_from_cache(&self, dep_node_index: DepNodeIndex, state: bool) {
debug!("mark_loaded_from_cache({:?}, {})",
self.data.as_ref().unwrap().current.borrow().data[dep_node_index].node,
state);
self.data
.as_ref()
.unwrap()
.loaded_from_cache
.borrow_mut()
.insert(dep_node_index, state);
}
pub fn was_loaded_from_cache(&self, dep_node: &DepNode) -> Option<bool> {
let data = self.data.as_ref().unwrap();
let dep_node_index = data.current.borrow().node_to_node_index[dep_node];
data.loaded_from_cache.borrow().get(&dep_node_index).cloned()
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved files associated with this CGU
pub saved_files: Vec<(WorkProductFileKind, String)>,
}
#[derive(Clone, Copy, Debug, RustcEncodable, RustcDecodable, PartialEq)]
pub enum WorkProductFileKind {
Object,
Bytecode,
BytecodeCompressed,
}
#[derive(Clone)]
struct DepNodeData {
node: DepNode,
edges: SmallVec<[DepNodeIndex; 8]>,
fingerprint: Fingerprint,
}
pub(super) struct CurrentDepGraph {
data: IndexVec<DepNodeIndex, DepNodeData>,
node_to_node_index: FxHashMap<DepNode, DepNodeIndex>,
forbidden_edge: Option<EdgeFilter>,
// Anonymous DepNodes are nodes the ID of which we compute from the list of
// their edges. This has the beneficial side-effect that multiple anonymous
// nodes can be coalesced into one without changing the semantics of the
// dependency graph. However, the merging of nodes can lead to a subtle
// problem during red-green marking: The color of an anonymous node from
// the current session might "shadow" the color of the node with the same
// ID from the previous session. In order to side-step this problem, we make
// sure that anon-node IDs allocated in different sessions don't overlap.
// This is implemented by mixing a session-key into the ID fingerprint of
// each anon node. The session-key is just a random number generated when
// the DepGraph is created.
anon_id_seed: Fingerprint,
total_read_count: u64,
total_duplicate_read_count: u64,
}
impl CurrentDepGraph {
fn new(prev_graph_node_count: usize) -> CurrentDepGraph {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_secs() * 1_000_000_000 +
duration.subsec_nanos() as u64;
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let forbidden_edge = if cfg!(debug_assertions) {
match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => {
match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => bug!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
}
}
Err(_) => None,
}
} else {
None
};
// Pre-allocate the dep node structures. We over-allocate a little so
// that we hopefully don't have to re-allocate during this compilation
// session.
let new_node_count_estimate = (prev_graph_node_count * 115) / 100;
CurrentDepGraph {
data: IndexVec::with_capacity(new_node_count_estimate),
node_to_node_index: FxHashMap::with_capacity_and_hasher(
new_node_count_estimate,
Default::default(),
),
anon_id_seed: stable_hasher.finish(),
forbidden_edge,
total_read_count: 0,
total_duplicate_read_count: 0,
}
}
fn complete_task(
&mut self,
key: DepNode,
task: OpenTask,
fingerprint: Fingerprint
) -> DepNodeIndex {
if let OpenTask::Regular(task) = task {
let RegularOpenTask {
node,
read_set: _,
reads
} = task.into_inner();
assert_eq!(node, key);
// If this is an input node, we expect that it either has no
// dependencies, or that it just depends on DepKind::CrateMetadata
// or DepKind::Krate. This happens for some "thin wrapper queries"
// like `crate_disambiguator` which sometimes have zero deps (for
// when called for LOCAL_CRATE) or they depend on a CrateMetadata
// node.
if cfg!(debug_assertions) {
if node.kind.is_input() && reads.len() > 0 &&
// FIXME(mw): Special case for DefSpan until Spans are handled
// better in general.
node.kind != DepKind::DefSpan &&
reads.iter().any(|&i| {
!(self.data[i].node.kind == DepKind::CrateMetadata ||
self.data[i].node.kind == DepKind::Krate)
})
{
bug!("Input node {:?} with unexpected reads: {:?}",
node,
reads.iter().map(|&i| self.data[i].node).collect::<Vec<_>>())
}
}
self.alloc_node(node, reads, fingerprint)
} else {
bug!("complete_task() - Expected regular task to be popped")
}
}
fn pop_anon_task(&mut self, kind: DepKind, task: OpenTask) -> DepNodeIndex {
if let OpenTask::Anon(task) = task {
let AnonOpenTask {
read_set: _,
reads
} = task.into_inner();
debug_assert!(!kind.is_input());
let mut fingerprint = self.anon_id_seed;
let mut hasher = StableHasher::new();
for &read in reads.iter() {
let read_dep_node = self.data[read].node;
::std::mem::discriminant(&read_dep_node.kind).hash(&mut hasher);
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
fingerprint = fingerprint.combine(read_dep_node.hash);
}
fingerprint = fingerprint.combine(hasher.finish());
let target_dep_node = DepNode {
kind,
hash: fingerprint,
};
self.intern_node(target_dep_node, reads, Fingerprint::ZERO).0
} else {
bug!("pop_anon_task() - Expected anonymous task to be popped")
}
}
fn complete_eval_always_task(
&mut self,
key: DepNode,
task: OpenTask,
fingerprint: Fingerprint
) -> DepNodeIndex {
if let OpenTask::EvalAlways {
node,
} = task {
debug_assert_eq!(node, key);
let krate_idx = self.node_to_node_index[&DepNode::new_no_params(DepKind::Krate)];
self.alloc_node(node, smallvec![krate_idx], fingerprint)
} else {
bug!("complete_eval_always_task() - Expected eval always task to be popped");
}
}
fn read_index(&mut self, source: DepNodeIndex) {
ty::tls::with_context_opt(|icx| {
let icx = if let Some(icx) = icx { icx } else { return };
match *icx.task {
OpenTask::Regular(ref task) => {
let mut task = task.lock();
self.total_read_count += 1;
if task.read_set.insert(source) {
task.reads.push(source);
if cfg!(debug_assertions) {
if let Some(ref forbidden_edge) = self.forbidden_edge {
let target = &task.node;
let source = self.data[source].node;
if forbidden_edge.test(&source, &target) {
bug!("forbidden edge {:?} -> {:?} created",