-
-
Notifications
You must be signed in to change notification settings - Fork 436
/
Copy pathlib.rs
328 lines (308 loc) · 8.65 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! Rand provides utilities to generate random numbers, to convert them to
//! useful types and distributions, and some randomness-related algorithms.
//!
//! # Quick Start
//!
//! ```
//! // The prelude import enables methods we use below, specifically
//! // Rng::random, Rng::sample, SliceRandom::shuffle and IndexedRandom::choose.
//! use rand::prelude::*;
//!
//! // Get an RNG:
//! let mut rng = rand::rng();
//!
//! // Try printing a random unicode code point (probably a bad idea)!
//! println!("char: '{}'", rng.random::<char>());
//! // Try printing a random alphanumeric value instead!
//! println!("alpha: '{}'", rng.sample(rand::distr::Alphanumeric) as char);
//!
//! // Generate and shuffle a sequence:
//! let mut nums: Vec<i32> = (1..100).collect();
//! nums.shuffle(&mut rng);
//! // And take a random pick (yes, we didn't need to shuffle first!):
//! let _ = nums.choose(&mut rng);
//! ```
//!
//! # The Book
//!
//! For the user guide and further documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![no_std]
#![cfg_attr(feature = "simd_support", feature(portable_simd))]
#![cfg_attr(
all(feature = "simd_support", target_feature = "avx512bw"),
feature(stdarch_x86_avx512)
)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![allow(
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord,
clippy::nonminimal_bool
)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[allow(unused)]
macro_rules! trace { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::trace!($($x)*)
}
) }
#[allow(unused)]
macro_rules! debug { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::debug!($($x)*)
}
) }
#[allow(unused)]
macro_rules! info { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::info!($($x)*)
}
) }
#[allow(unused)]
macro_rules! warn { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::warn!($($x)*)
}
) }
#[allow(unused)]
macro_rules! error { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::error!($($x)*)
}
) }
// Re-exports from rand_core
pub use rand_core::{CryptoRng, RngCore, SeedableRng, TryCryptoRng, TryRngCore};
// Public modules
pub mod distr;
pub mod prelude;
mod rng;
pub mod rngs;
pub mod seq;
// Public exports
#[cfg(feature = "thread_rng")]
pub use crate::rngs::thread::rng;
/// Access the thread-local generator
///
/// Use [`rand::rng()`](rng()) instead.
#[cfg(feature = "thread_rng")]
#[deprecated(since = "0.9.0", note = "renamed to `rng`")]
#[inline]
pub fn thread_rng() -> crate::rngs::ThreadRng {
rng()
}
pub use rng::{Fill, Rng};
#[cfg(feature = "thread_rng")]
use crate::distr::{Distribution, StandardUniform};
/// Generate a random value using the thread-local random number generator.
///
/// This function is shorthand for <code>[rng()].[random()](Rng::random)</code>:
///
/// - See [`ThreadRng`] for documentation of the generator and security
/// - See [`StandardUniform`] for documentation of supported types and distributions
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// If you're calling `random()` repeatedly, consider using a local `rng`
/// handle to save an initialization-check on each usage:
///
/// ```
/// use rand::Rng; // provides the `random` method
///
/// let mut rng = rand::rng(); // a local handle to the generator
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = rng.random();
/// }
/// ```
///
/// [`StandardUniform`]: distr::StandardUniform
/// [`ThreadRng`]: rngs::ThreadRng
#[cfg(feature = "thread_rng")]
#[inline]
pub fn random<T>() -> T
where
StandardUniform: Distribution<T>,
{
rng().random()
}
/// Return an iterator over [`random()`] variates
///
/// This function is shorthand for
/// <code>[rng()].[random_iter](Rng::random_iter)()</code>.
///
/// # Example
///
/// ```
/// let v: Vec<i32> = rand::random_iter().take(5).collect();
/// println!("{v:?}");
/// ```
#[cfg(feature = "thread_rng")]
#[inline]
pub fn random_iter<T>() -> distr::Iter<StandardUniform, rngs::ThreadRng, T>
where
StandardUniform: Distribution<T>,
{
rng().random_iter()
}
/// Generate a random value in the given range using the thread-local random number generator.
///
/// This function is shorthand for
/// <code>[rng()].[random_range](Rng::random_range)(<var>range</var>)</code>.
///
/// # Example
///
/// ```
/// let y: f32 = rand::random_range(0.0..=1e9);
/// println!("{}", y);
///
/// let words: Vec<&str> = "Mary had a little lamb".split(' ').collect();
/// println!("{}", words[rand::random_range(..words.len())]);
/// ```
/// Note that the first example can also be achieved (without `collect`'ing
/// to a `Vec`) using [`seq::IteratorRandom::choose`].
#[cfg(feature = "thread_rng")]
#[inline]
pub fn random_range<T, R>(range: R) -> T
where
T: distr::uniform::SampleUniform,
R: distr::uniform::SampleRange<T>,
{
rng().random_range(range)
}
/// Return a bool with a probability `p` of being true.
///
/// This function is shorthand for
/// <code>[rng()].[random_bool](Rng::random_bool)(<var>p</var>)</code>.
///
/// # Example
///
/// ```
/// println!("{}", rand::random_bool(1.0 / 3.0));
/// ```
///
/// # Panics
///
/// If `p < 0` or `p > 1`.
#[cfg(feature = "thread_rng")]
#[inline]
#[track_caller]
pub fn random_bool(p: f64) -> bool {
rng().random_bool(p)
}
/// Return a bool with a probability of `numerator/denominator` of being
/// true.
///
/// That is, `random_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
/// returning true. If `numerator == denominator`, then the returned value
/// is guaranteed to be `true`. If `numerator == 0`, then the returned
/// value is guaranteed to be `false`.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same `numerator` and `denominator` repeatedly.
///
/// This function is shorthand for
/// <code>[rng()].[random_ratio](Rng::random_ratio)(<var>numerator</var>, <var>denominator</var>)</code>.
///
/// # Panics
///
/// If `denominator == 0` or `numerator > denominator`.
///
/// # Example
///
/// ```
/// println!("{}", rand::random_ratio(2, 3));
/// ```
///
/// [`Bernoulli`]: distr::Bernoulli
#[cfg(feature = "thread_rng")]
#[inline]
#[track_caller]
pub fn random_ratio(numerator: u32, denominator: u32) -> bool {
rng().random_ratio(numerator, denominator)
}
/// Fill any type implementing [`Fill`] with random data
///
/// This function is shorthand for
/// <code>[rng()].[fill](Rng::fill)(<var>dest</var>)</code>.
///
/// # Example
///
/// ```
/// let mut arr = [0i8; 20];
/// rand::fill(&mut arr[..]);
/// ```
///
/// Note that you can instead use [`random()`] to generate an array of random
/// data, though this is slower for small elements (smaller than the RNG word
/// size).
#[cfg(feature = "thread_rng")]
#[inline]
#[track_caller]
pub fn fill<T: Fill + ?Sized>(dest: &mut T) {
dest.fill(&mut rng())
}
#[cfg(test)]
mod test {
use super::*;
/// Construct a deterministic RNG with the given seed
pub fn rng(seed: u64) -> impl RngCore {
// For tests, we want a statistically good, fast, reproducible RNG.
// PCG32 will do fine, and will be easy to embed if we ever need to.
const INC: u64 = 11634580027462260723;
rand_pcg::Pcg32::new(seed, INC)
}
#[test]
#[cfg(feature = "thread_rng")]
fn test_random() {
let _n: u64 = random();
let _f: f32 = random();
#[allow(clippy::type_complexity)]
let _many: (
(),
[(u32, bool); 3],
(u8, i8, u16, i16, u32, i32, u64, i64),
(f32, (f64, (f64,))),
) = random();
}
#[test]
#[cfg(feature = "thread_rng")]
fn test_range() {
let _n: usize = random_range(42..=43);
let _f: f32 = random_range(42.0..43.0);
}
}