-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrc32c.c
241 lines (213 loc) · 7.84 KB
/
crc32c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
* Copyright (C) 2013, 2021 Mark Adler
* Version 1.2 5 Jun 2021 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
*/
/* Version History:
1.0 10 Feb 2013 First version
1.1 31 May 2021 Correct register constraints on assembly instructions
Include pre-computed tables to avoid use of pthreads
Return zero for the CRC when buf is NULL, as initial value
1.2 5 Jun 2021 Make tables constant
*/
// Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
// CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
// version is provided as a fall-back, as well as for speed comparisons.
#include <stddef.h>
#include <stdint.h>
// Tables for CRC word-wise calculation, definitions of LONG and SHORT, and CRC
// shifts by LONG and SHORT bytes.
#include "crc32c.h"
// Table-driven software version as a fall-back. This is about 15 times slower
// than using the hardware instructions. This assumes little-endian integers,
// as is the case on Intel processors that the assembler code here is for.
static uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
if (buf == NULL)
return 0;
unsigned char const *data = buf;
while (len && ((uintptr_t)data & 7) != 0) {
crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
len--;
}
size_t n = len >> 3;
for (size_t i = 0; i < n; i++) {
uint64_t word = crc ^ ((uint64_t const *)data)[i];
crc = crc32c_table[7][word & 0xff] ^
crc32c_table[6][(word >> 8) & 0xff] ^
crc32c_table[5][(word >> 16) & 0xff] ^
crc32c_table[4][(word >> 24) & 0xff] ^
crc32c_table[3][(word >> 32) & 0xff] ^
crc32c_table[2][(word >> 40) & 0xff] ^
crc32c_table[1][(word >> 48) & 0xff] ^
crc32c_table[0][word >> 56];
}
data += n << 3;
len &= 7;
while (len) {
len--;
crc = (crc >> 8) ^ crc32c_table[0][(crc ^ *data++) & 0xff];
}
return crc;
}
// Apply the zeros operator table to crc.
static uint32_t crc32c_shift(uint32_t const zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
// Compute CRC-32C using the Intel hardware instruction. Three crc32q
// instructions are run in parallel on a single core. This gives a
// factor-of-three speedup over a single crc32q instruction, since the
// throughput of that instruction is one cycle, but the latency is three
// cycles.
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
if (buf == NULL)
return 0;
// Pre-process the crc.
uint64_t crc0 = crc ^ 0xffffffff;
// Compute the crc for up to seven leading bytes, bringing the data pointer
// to an eight-byte boundary.
unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
// Compute the crc on sets of LONG*3 bytes, making use of three ALUs in
// parallel on a single core.
while (len >= LONG*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const *end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
"crc32q\t" LONGx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
next += LONG*2;
len -= LONG*3;
}
// Do the same thing, but now on SHORT*3 blocks for the remaining data less
// than a LONG*3 block.
while (len >= SHORT*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const *end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
"crc32q\t" SHORTx2 "(%3), %2"
: "+r"(crc0), "+r"(crc1), "+r"(crc2)
: "r"(next), "m"(*next));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
next += SHORT*2;
len -= SHORT*3;
}
// Compute the crc on the remaining eight-byte units less than a SHORT*3
// block.
unsigned char const *end = next + (len - (len & 7));
while (next < end) {
__asm__("crc32q\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next += 8;
}
len &= 7;
// Compute the crc for up to seven trailing bytes.
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "+r"(crc0)
: "r"(next), "m"(*next));
next++;
len--;
}
// Return the crc, post-processed.
return ~(uint32_t)crc0;
}
// Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
// introduced in November, 2008. This does not check for the existence of the
// cpuid instruction itself, which was introduced on the 486SL in 1992, so this
// will fail on earlier x86 processors. cpuid works on all Pentium and later
// processors.
#define SSE42(have) \
do { \
uint32_t eax, ecx; \
eax = 1; \
__asm__("cpuid" \
: "=c"(ecx) \
: "a"(eax) \
: "%ebx", "%edx"); \
(have) = (ecx >> 20) & 1; \
} while (0)
// Compute a CRC-32C. If the crc32 instruction is available, use the hardware
// version. Otherwise, use the software version.
uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
int sse42;
SSE42(sse42);
return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
}
#ifdef TEST
#include <stdio.h>
#include <stdlib.h>
#include "load.h"
int main(int argc, char **argv) {
/* interpret argument */
if (argc > 2) {
fputs("only one argument permitted\n", stderr);
return 1;
}
long rep = argc == 1 ? 1 : strtol(argv[1], NULL, 10);
if (rep == 0) {
fputs("usage: crc32c [[-]nnn] < data\n"
" where nnn is the number of times to repeat\n"
" negative forces the software implementation\n", stderr);
return 0;
}
int sw = rep < 0;
if (sw)
rep = -rep;
/* read input */
void *dat = NULL;
size_t size, len;
int ret = load(stdin, 0, &dat, &size, &len);
if (ret) {
fputs("error reading from stdin\n", stderr);
return 1;
}
/* compute crc rep times */
uint32_t crc;
do {
crc = sw ? crc32c_sw(0, dat, len) : crc32c(0, dat, len);
} while (--rep);
/* show crc */
printf("%08x\n", crc);
/* clean up */
free(dat);
return 0;
}
#endif /* TEST */