forked from jancarlsson/snarklib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBigInt.hpp
447 lines (367 loc) · 10.5 KB
/
BigInt.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#ifndef _SNARKLIB_BIG_INT_HPP_
#define _SNARKLIB_BIG_INT_HPP_
#include <array>
#include <cassert>
#include <climits>
#include <cstdint>
#include <cctype>
#include <gmp.h>
#include <iostream>
#include <istream>
#include <memory>
#include <ostream>
#include <random>
#include <string>
#include <vector>
#include "AsmMacros.hpp"
namespace snarklib {
////////////////////////////////////////////////////////////////////////////////
// BigInt
//
// Wrapper around GMP big integers
//
template <mp_size_t N>
class BigInt
{
public:
static constexpr mp_size_t numberLimbs() {
return N;
}
// default is zero
BigInt() {
clear(); // GMP data must be zeroed before use
}
// unsigned long
explicit BigInt(const unsigned long a)
: BigInt{}
{
#ifdef USE_ASSERT
assert(CHAR_BIT * sizeof(a) <= GMP_NUMB_BITS);
#endif
m_data[0] = a;
}
// string
explicit BigInt(const std::string& base10)
: BigInt{}
{
std::vector<unsigned char> v;
v.reserve(base10.size());
for (const auto& c : base10) {
#ifdef USE_ASSERT
assert(isdigit(c));
#endif
v.push_back(c - '0');
}
const mp_size_t limbsWritten = mpn_set_str(data(),
std::addressof(v[0]),
v.size(),
10);
#ifdef USE_ASSERT
assert(limbsWritten <= N);
#endif
}
// C-string
explicit BigInt(const char* base10)
: BigInt{std::string(base10)}
{}
// GMP integer
explicit BigInt(const mpz_t a) {
mpz_t k;
mpz_init_set(k, a);
for (auto& r : m_data) {
r = mpz_get_ui(k);
mpz_fdiv_q_2exp(k,
k,
GMP_NUMB_BITS);
}
#ifdef USE_ASSERT
assert(0 == mpz_sgn(k));
#endif
mpz_clear(k);
}
BigInt<N>& operator= (const BigInt<N>& other) = default;
BigInt<N>& operator= (const unsigned long a) {
return *this = BigInt<N>(a);
}
BigInt<N>& operator= (const std::string& s) {
return *this = BigInt<N>(s);
}
BigInt<N>& operator= (const char* s) {
return *this = BigInt<N>(s);
}
bool operator== (const BigInt<N>& other) const {
return 0 == mpn_cmp(data(),
other.data(),
N);
}
bool operator!= (const BigInt<N>& other) const {
return ! operator== (other);
}
// used by multiExp() for a max-heap
bool operator< (const BigInt<N>& other) const {
#if defined(__x86_64__) && defined(USE_ASM)
if (3 == N)
{
long res;
__asm__
("// check for overflow \n\t"
"mov $0, %[res] \n\t"
ADD_CMP(16)
ADD_CMP(8)
ADD_CMP(0)
"jmp done%= \n\t"
"subtract%=: \n\t"
"mov $1, %[res] \n\t"
"done%=: \n\t"
: [res] "=&r" (res)
: [A] "r" (other.data()), [mod] "r" (data())
: "cc", "%rax");
return res;
}
else if (4 == N)
{
long res;
__asm__
("// check for overflow \n\t"
"mov $0, %[res] \n\t"
ADD_CMP(24)
ADD_CMP(16)
ADD_CMP(8)
ADD_CMP(0)
"jmp done%= \n\t"
"subtract%=: \n\t"
"mov $1, %[res] \n\t"
"done%=: \n\t"
: [res] "=&r" (res)
: [A] "r" (other.data()), [mod] "r" (data())
: "cc", "%rax");
return res;
}
else if (5 == N)
{
long res;
__asm__
("// check for overflow \n\t"
"mov $0, %[res] \n\t"
ADD_CMP(32)
ADD_CMP(24)
ADD_CMP(16)
ADD_CMP(8)
ADD_CMP(0)
"jmp done%= \n\t"
"subtract%=: \n\t"
"mov $1, %[res] \n\t"
"done%=: \n\t"
: [res] "=&r" (res)
: [A] "r" (other.data()), [mod] "r" (data())
: "cc", "%rax");
return res;
}
else
#endif
{
return 0 > mpn_cmp(data(),
other.data(),
N);
}
}
void clear() {
mpn_zero(data(), N);
}
bool isZero() const {
for (const auto& r : m_data) {
if (0 != r)
return false;
}
return true;
}
explicit operator bool() const {
return ! isZero();
}
static constexpr std::size_t maxBits() {
return N * GMP_NUMB_BITS;
}
std::size_t numBits() const {
for (int i = N - 1; i >= 0; --i) {
const mp_limb_t x = m_data[i];
if (0 != x)
return ((i + 1) * GMP_NUMB_BITS) - __builtin_clzl(x);
}
return 0;
}
// convert to unsigned long
unsigned long asUnsignedLong() const {
return m_data[0];
}
// convert to GMP integer
void toMPZ(mpz_t a) const {
mpz_set_ui(a, 0);
for (int i = N - 1; i >= 0; --i) {
mpz_mul_2exp(a,
a,
GMP_NUMB_BITS);
mpz_add_ui(a,
a,
m_data[i]);
}
}
bool testBit(const std::size_t i) const {
if (i >= N * GMP_NUMB_BITS) {
return false;
} else {
const std::size_t part = i / GMP_NUMB_BITS;
const std::size_t bit = i - (GMP_NUMB_BITS * part);
return m_data[part] & (1ul << bit);
}
}
void clearBit(const std::size_t i) {
const std::size_t part = i / GMP_NUMB_BITS;
const std::size_t bit = i - (GMP_NUMB_BITS * part);
m_data[part] &= ~(1ul << bit);
}
BigInt<N>& randomize() {
#ifdef USE_ASSERT
assert(GMP_NUMB_BITS == sizeof(mp_limb_t) * CHAR_BIT);
#endif
std::random_device rd; // uses /dev/urandom
const std::size_t n = sizeof(mp_limb_t) / sizeof(unsigned int);
for (auto& r : m_data) {
for (std::size_t i = 0; i < n; ++i) {
r <<= sizeof(unsigned int) * CHAR_BIT;
r |= rd();
}
}
return *this;
}
static BigInt<N> zero() {
return BigInt<N>(0ul);
}
static BigInt<N> one() {
return BigInt<N>(1ul);
}
static BigInt<N> random() {
BigInt<N> a;
return a.randomize();
}
mp_limb_t* data() {
return m_data.data();
}
const mp_limb_t* data() const {
return m_data.data();
}
void marshal_out(std::ostream& os, const bool use_endl = true) const {
mpz_t t;
mpz_init(t);
toMPZ(t);
os << t;
if (use_endl) os << std::endl;
mpz_clear(t);
}
bool marshal_in(std::istream& is) {
std::string s;
is >> s;
if (!is) return false;
*this = s;
return true; // ok
}
private:
std::array<mp_limb_t, N> m_data;
};
////////////////////////////////////////////////////////////////////////////////
// Operator functions
//
// print to stream
template <mp_size_t N>
std::ostream& operator<< (std::ostream& os, const BigInt<N>& a) {
a.marshal_out(os, false);
return os;
}
// extract from stream
template <mp_size_t N>
std::istream& operator>> (std::istream& is, BigInt<N>& a) {
a.marshal_in(is);
return is;
}
// Russian peasant algorithm (field exponentiation)
// for fields, exponent follows base
template <typename T, mp_size_t N>
T power(const T& base, const BigInt<N>& exponent) {
T result = T::one(); // multiplicative identity
bool foundOne = false;
for (long i = exponent.maxBits() - 1; i >= 0; --i) {
if (foundOne) {
result = result * result;
}
if (exponent.testBit(i)) {
foundOne = true;
result = result * base;
}
}
return result;
}
// Russian peasant algorithm (group multiplication)
// for groups: base follows exponent
template <typename T, mp_size_t N>
T power(const BigInt<N>& exponent, const T& base) {
T result = T::zero(); // additive identity
bool foundOne = false;
for (long i = exponent.maxBits() - 1; i >= 0; --i) {
if (foundOne) {
result = result.dbl();
}
if (exponent.testBit(i)) {
foundOne = true;
result = result + base;
}
}
return result;
}
// Russian peasant algorithm (for fields)
template <typename T>
T power(const T& base, const unsigned long exponent) {
return power(base, BigInt<1>(exponent));
}
////////////////////////////////////////////////////////////////////////////////
// wNAF - windowed Non-Adjacent Form (elliptic curve point multiplication)
//
// used for F[(p^3)^2] cyclotomic exponentiation
// called by wnafExp() for group exponentiation
template <mp_size_t N>
std::array<long, N * GMP_NUMB_BITS + 1> // BigInt<B>::maxBits()
find_wNAF(const std::size_t w, const BigInt<N>& exponent)
{
std::array<long, N * GMP_NUMB_BITS + 1> res = {0};
auto c = exponent;
long j = 0;
while (! c.isZero()) {
long u;
if (1 == (c.data()[0] & 1)) {
u = c.data()[0] % (1u << (w + 1));
if (u > (1 << w)) {
u = u - (1 << (w + 1));
}
if (u > 0) {
mpn_sub_1(c.data(),
c.data(),
N,
u);
} else {
mpn_add_1(c.data(),
c.data(),
N,
-u);
}
} else {
u = 0;
}
res[j++] = u;
// c = c/2
mpn_rshift(c.data(),
c.data(),
N,
1);
}
return res;
}
} // namespace snarklib
#endif