-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcallModel.py
39 lines (29 loc) · 1.37 KB
/
callModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def predict_step(image_paths):
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import torch
from PIL import Image
from io import BytesIO
import requests
model_path = "../model/"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
images = []
for image_path in image_paths:
response = requests.get(image_path)
i_image = Image.open(BytesIO(response.content))
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
print(predict_step(["https://admmedia.s3.ap-south-1.amazonaws.com/user_uploads/img_0390164a-4946-469e-ae1a-b4cbff3e8dbb"])) # ['a woman in a hospital bed with a woman in a hospital bed']