-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparams.py
173 lines (150 loc) · 7.52 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""define parameters"""
#from argparse import ArgumentParser
import os
import yaml
DEFAULT_CHKPT_DIR = 'chkpts'
DEFAULT_LOG_DIR = 'logs'
def add_global_params(parser):
"""define global parameters"""
parser.add_argument('--train_chkpt_dir', default=DEFAULT_CHKPT_DIR, type=str,
help='Directory for saved model')
parser.add_argument('--log_dir', default=DEFAULT_LOG_DIR, type=str,
help='Directory for summary and logs')
return parser
DEFAULT_BATCH_SIZE = 6
DEFAULT_DATA_MODE = 'all'
DEFAULT_DATA_DIR = './'
def add_data_params(parser):
"""define data parameters"""
parser.add_argument('--data_dir', default=DEFAULT_DATA_DIR, type=str,
help='Directory storing input data')
parser.add_argument('--data_batch_size', type=int, default=DEFAULT_BATCH_SIZE,
help='Number of examples in a minibatch')
parser.add_argument('--data_serialized', dest='data_serialized', default=False,
action='store_true', help='Default .data files or serialized .tfrecords')
parser.add_argument('--data_mode', type=str, default=DEFAULT_DATA_MODE,
help='Which part of the data to use: "all", "diff", "exp_only"')
parser.add_argument('--data_batch_norm', dest='data_batch_norm', default=False,
action='store_true', help='Batch normalize outputs of in layer')
return parser
DEFAULT_ACTV_STR = 'sigmoid'
DEFAULT_CONV_DEPTH = 0
def add_conv_params(parser):
"""define convolutional parameters"""
parser.add_argument('--conv_depth', type=int, default=DEFAULT_CONV_DEPTH,
help='Depth of convolutional_layer')
parser.add_argument('--conv_actv_str', type=str, default=DEFAULT_ACTV_STR,
help='Activiation function')
parser.add_argument('--conv_batch_norm', dest='conv_batch_norm', default=False,
action='store_true', help='Batch normalize outputs of conv layer')
parser.add_argument('--conv_gene_pair', default=False, action="store_true",
help='Do gene pair convolution')
return parser
DEFAULT_DIM_STR = '5,5'
DEFAULT_RES_BLOCK_SIZE = 0
def add_fcs_params(parser):
"""define fully connected layer parameters"""
parser.add_argument('--fcs_dimension_str', type=str, default=DEFAULT_DIM_STR,
help='Hidden layers of the model')
parser.add_argument('--fcs_actv_str', type=str, default=DEFAULT_ACTV_STR,
help='Activiation function')
parser.add_argument('--fcs_batch_norm', dest='fcs_batch_norm', default=False,
action='store_true', help='Batch normalize outputs of fc layer')
parser.add_argument('--fcs_res_block_size', type=int, default=DEFAULT_RES_BLOCK_SIZE,
help='Number of layers per residual block')
return parser
DEFAULT_NCLASSES = 50
def add_outlayer_params(parser):
"""define output parameters"""
parser.add_argument('--out_actv_str', type=str, default=DEFAULT_ACTV_STR,
help='Activiation function')
parser.add_argument('--out_label_count', type=int, default=DEFAULT_NCLASSES,
help='Number of classes for training')
return parser
DEFAULT_KL_SPARCITY = 0.2
def add_regularization_params(parser):
"""define regularization parameters"""
parser.add_argument('--reg_do_keep_prob', type=float, default=1.0,
help='Keep probability for training dropout')
parser.add_argument('--reg_kl_sparsity', type=float, default=DEFAULT_KL_SPARCITY,
help='Probability for activation of neuron')
parser.add_argument('--reg_kl_scale', type=float, default=0,
help='Regulariztion scalar for KL activation loss')
parser.add_argument('--reg_l1_scale', type=float, default=0,
help='Regulariztion scalar for L1 weights loss')
parser.add_argument('--reg_l2_scale', type=float, default=0,
help='Regulariztion scalar for L2 weights loss')
return parser
DEFAULT_MAX_STEPS = 1
DEFAULT_SECS_PER_SAVE = 600
DEFAULT_OPTIMIZER_STR = "Adam"
DEFAULT_LEARNING_RATE = "0.01"
def add_train_params(parser):
"""define training parameters"""
parser.add_argument('--training', dest='training', default=False,
action='store_true', help='Mark if training model')
parser.add_argument('--train_max_steps', type=int, default=DEFAULT_MAX_STEPS,
help='Number of steps to run trainer')
parser.add_argument('--train_save_ckpt_secs', type=int, default=DEFAULT_SECS_PER_SAVE,
help='Number of seconds to run trainer before saving ckpt')
parser.add_argument('--train_save_summ_secs', type=int, default=DEFAULT_SECS_PER_SAVE,
help='Number of seconds to run trainer before saving summaries')
parser.add_argument('--train_optimizer_str', type=str, default=DEFAULT_OPTIMIZER_STR,
help='Optimizer function')
parser.add_argument('--train_learning_rate', type=float, default=DEFAULT_LEARNING_RATE,
help='Initial learning rate')
return parser
DEFAULT_EVAL_MODE = 'stats'
DEFAULT_EVAL_INTERVAL = 0
def add_eval_params(parser):
"""define evaluation parameters"""
parser.add_argument('--eval_run_mode', type=str, default=DEFAULT_EVAL_MODE,
help='Mode: "stats", "preds", "probs"')
parser.add_argument('--eval_interval_secs', type=int, default=DEFAULT_EVAL_INTERVAL,
help='Time between sampling the evaluation metrics')
return parser
def add_trainer_args(parser):
"""merge parameters for training"""
group1 = parser.add_argument_group('global parameters')
group1 = add_global_params(group1)
group2 = parser.add_argument_group('data parameters')
group2 = add_data_params(group2)
group3 = parser.add_argument_group('training parameters')
group3 = add_train_params(group3)
pass
group4 = parser.add_argument_group('regularization parameters')
group4 = add_regularization_params(group4)
group5 = parser.add_argument_group('convolutional_layer parameters')
group5 = add_conv_params(group5)
group6 = parser.add_argument_group('fully_connected_layer parameters')
group6 = add_fcs_params(group6)
group7 = parser.add_argument_group('output_layer parameters')
group7 = add_outlayer_params(group7)
group8 = parser.add_argument_group('evaluation and summary parameters')
group8 = add_eval_params(group8)
return parser
def add_evaluater_args(parser):
"""merge parameters for evaluation"""
group1 = parser.add_argument_group('global parameters')
group1 = add_global_params(group1)
group2 = parser.add_argument_group('data parameters')
group2 = add_data_params(group2)
group3 = parser.add_argument_group('evaluation and summary parameters')
group3 = add_eval_params(group3)
return parser
def default_param_dict(parser):
"""create param_dict with defaults"""
#parser = ArgumentParser()
parser = add_trainer_args(parser)
param_dict = vars(parser.parse_args())
return param_dict
def param_dict_test(parser):
"""test param module"""
#parser = ArgumentParser()
parser = add_trainer_args(parser)
param_dict = vars(parser.parse_args())
param_yml = os.path.join(param_dict["log_dir"], 'params.yml')
with open(param_yml, 'w') as outfile:
yaml.dump(param_dict, outfile, default_flow_style=False)
#if __name__ == '__main__':
# param_dict_test()