forked from NeuralTextualInversion/NeTI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckpoint_handler.py
108 lines (91 loc) · 5.25 KB
/
checkpoint_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from pathlib import Path
from typing import Tuple
import pyrallis
import torch
from accelerate import Accelerator
from torch import nn
from transformers import CLIPTokenizer
from models.neti_clip_text_encoder import NeTICLIPTextModel
from models.neti_mapper import NeTIMapper
from models.positional_encoding import NeTIPositionalEncoding, NeTIPositionalEncodingWithVPs, BasicEncoder
from training.config import RunConfig
class CheckpointHandler:
def __init__(self, cfg: RunConfig, placeholder_token_string: str, placeholder_token_id: int, save_root: Path):
self.cfg = cfg
self.placeholder_token_string = placeholder_token_string
self.placeholder_token_id = placeholder_token_id
self.save_root = save_root
def save_model(self, text_encoder: NeTICLIPTextModel,
accelerator: Accelerator,
embeds_save_name: str,
mapper_save_name: str):
self.save_learned_embeds(text_encoder, accelerator, embeds_save_name)
self.save_mapper(text_encoder, mapper_save_name)
def save_learned_embeds(self, text_encoder: NeTICLIPTextModel, accelerator: Accelerator, save_name: str):
"""
Save learned embeddings. This embedding isn't really learned, but we'll add it to the tokenizer at inference
to take the place of our placeholder token.
"""
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[self.placeholder_token_id]
learned_embeds = learned_embeds.detach().cpu()
learned_embeds_dict = {self.placeholder_token_string: learned_embeds}
torch.save(learned_embeds_dict, self.save_root / save_name)
def save_mapper(self, text_encoder: NeTICLIPTextModel, save_name: str):
""" Save the mapper and config to be used at inference. """
cfg_ = RunConfig(**self.cfg.__dict__.copy())
state_dict = {
"state_dict": text_encoder.text_model.embeddings.mapper.state_dict(),
"cfg": pyrallis.encode(cfg_),
"encoder": text_encoder.text_model.embeddings.mapper.encoder
}
torch.save(state_dict, self.save_root / save_name)
@staticmethod
def load_mapper(mapper_path: Path) -> Tuple[RunConfig, NeTIMapper]:
mapper_ckpt = torch.load(mapper_path, map_location="cpu")
cfg = pyrallis.decode(RunConfig, mapper_ckpt['cfg'])
neti_mapper = NeTIMapper(output_dim=768,
use_nested_dropout=cfg.model.use_nested_dropout,
nested_dropout_prob=cfg.model.nested_dropout_prob,
norm_scale=cfg.model.target_norm,
use_positional_encoding=cfg.model.use_positional_encoding,
num_pe_time_anchors=cfg.model.num_pe_time_anchors,
pe_sigmas=cfg.model.pe_sigmas,
output_bypass=cfg.model.output_bypass,
use_vps_encoder=cfg.model.use_vps_encoder)
neti_mapper.load_state_dict(mapper_ckpt['state_dict'], strict=True)
encoder = mapper_ckpt['encoder']
if isinstance(encoder, NeTIPositionalEncoding) or isinstance(encoder, NeTIPositionalEncodingWithVPs):
encoder.w = nn.Parameter(mapper_ckpt['encoder'].w.cuda())
elif isinstance(encoder, BasicEncoder):
encoder.normalized_timesteps = mapper_ckpt['encoder'].normalized_timesteps.cuda()
encoder.normalized_unet_layers = mapper_ckpt['encoder'].normalized_unet_layers.cuda()
neti_mapper.encoder = encoder.cuda()
neti_mapper.cuda()
neti_mapper.eval()
return cfg, neti_mapper
@staticmethod
def load_learned_embed_in_clip(learned_embeds_path: Path,
text_encoder: NeTICLIPTextModel,
tokenizer: CLIPTokenizer) -> Tuple[str, int]:
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
# separate token and the embeds
trained_tokens = list(loaded_learned_embeds.keys())
embeds = list(loaded_learned_embeds.values())
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds = [e.to(dtype) for e in embeds]
# add the tokens in tokenizer
num_added_tokens = tokenizer.add_tokens(trained_tokens)
if num_added_tokens == 0:
raise ValueError(f"The tokenizer already contains the token {trained_tokens[0]}. "
f"Please pass a different `token` that is not already in the tokenizer.")
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
placeholder_token_ids = [tokenizer.convert_tokens_to_ids(t) for t in trained_tokens]
for idx, (token, token_id, embed) in enumerate(zip(trained_tokens, placeholder_token_ids, embeds)):
text_encoder.get_input_embeddings().weight.data[token_id] = embed
assert len(trained_tokens) == 1, "Only one placeholder token is supported"
placeholder_token = trained_tokens[0]
placeholder_token_id = placeholder_token_ids[0]
return placeholder_token, placeholder_token_id