-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_ace_feature.py
490 lines (379 loc) · 20 KB
/
test_ace_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2022.
import argparse
import logging
import math
import time
from distutils.util import strtobool
from pathlib import Path
import cv2
import numpy as np
import torch
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
import dsacstar
from ace_network import Regressor, scores_to_points
from dataset import CamLocDataset
import ace_vis_util as vutil
from ace_visualizer import ACEVisualizer
from ace_util import get_pixel_grid, to_homogeneous
from predict_pose import PosePredictor, pose_to_vector, weight_average
import os
from scipy.spatial import KDTree
from scipy.spatial.transform import Rotation as R
import threading
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
_logger = logging.getLogger(__name__)
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Test a trained network on a specific scene.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('scene', type=Path,
help='path to a scene in the dataset folder, e.g. "datasets/Cambridge_GreatCourt"')
parser.add_argument('network', type=Path, help='path to a network trained for the scene (just the head weights)')
parser.add_argument('--encoder_path', type=Path, default=Path(__file__).parent / "ace_encoder_pretrained.pt",
help='file containing pre-trained encoder weights')
parser.add_argument('--point_header_path', type=Path, default=Path(__file__).parent / "point_header.pt",
help='file containing pre-trained point header weights')
parser.add_argument('--session', '-sid', default='',
help='custom session name appended to output files, '
'useful to separate different runs of a script')
parser.add_argument('--image_resolution', type=int, default=480, help='base image resolution')
# keypoint detection
parser.add_argument('--keypoint_threshold', type=float, default=0.0001,
help='keypoint detection threshold')
parser.add_argument('--max_keypoints', type=int, default=1000,
help='The maximum number of keypoint detected')
parser.add_argument('--remove_border', type=int, default=4,
help='The maximum number of keypoint detected')
# test mode
parser.add_argument('--test_mode', '-tm', type=int, default=1, choices=[0, 1, 2],
help='test mode: 0 = ACE original mode, 1 = use sequence information, '
'2 = fast mode, use keypoint of one frame')
# ACE is RGB-only, no need for this param.
# parser.add_argument('--mode', '-m', type=int, default=1, choices=[1, 2], help='test mode: 1 = RGB, 2 = RGB-D')
# DSACStar RANSAC parameters. ACE Keeps them at default.
parser.add_argument('--hypotheses', '-hyps', type=int, default=64,
help='number of hypotheses, i.e. number of RANSAC iterations')
parser.add_argument('--threshold', '-t', type=float, default=10,
help='inlier threshold in pixels (RGB) or centimeters (RGB-D)')
parser.add_argument('--inlieralpha', '-ia', type=float, default=100,
help='alpha parameter of the soft inlier count; controls the softness of the '
'hypotheses score distribution; lower means softer')
parser.add_argument('--maxpixelerror', '-maxerrr', type=float, default=100,
help='maximum reprojection (RGB, in px) or 3D distance (RGB-D, in cm) error when checking '
'pose consistency towards all measurements; error is clamped to this value for stability')
# Params for the visualization. If enabled, it will slow down relocalisation considerably. But you get a nice video :)
parser.add_argument('--render_visualization', type=_strtobool, default=False,
help='create a video of the mapping process')
parser.add_argument('--render_target_path', type=Path, default='renderings',
help='target folder for renderings, visualizer will create a subfolder with the map name')
parser.add_argument('--render_flipped_portrait', type=_strtobool, default=False,
help='flag for wayspots dataset where images are sideways portrait')
parser.add_argument('--render_sparse_queries', type=_strtobool, default=False,
help='set to true if your queries are not a smooth video')
parser.add_argument('--render_pose_error_threshold', type=int, default=20,
help='pose error threshold for the visualisation in cm/deg')
parser.add_argument('--render_map_depth_filter', type=int, default=10,
help='to clean up the ACE point cloud remove points too far away')
parser.add_argument('--render_camera_z_offset', type=int, default=4,
help='zoom out of the scene by moving render camera backwards, in meters')
parser.add_argument('--render_frame_skip', type=int, default=1,
help='skip every xth frame for long and dense query sequences')
opt = parser.parse_args()
device = torch.device("cuda")
num_workers = 6
scene_path = Path(opt.scene)
head_network_path = Path(opt.network)
encoder_path = Path(opt.encoder_path)
point_header_path = Path(opt.point_header_path)
session = opt.session
# Setup dataset.
testset = CamLocDataset(
scene_path / "test",
mode=0, # Default for ACE, we don't need scene coordinates/RGB-D.
image_height=opt.image_resolution,
)
_logger.info(f'Test images found: {len(testset)}')
# Setup dataloader. Batch size 1 by default.
testset_loader = DataLoader(testset, shuffle=False, num_workers=6)
# Load network weights.
encoder_state_dict = torch.load(encoder_path, map_location="cpu")
_logger.info(f"Loaded encoder from: {encoder_path}")
head_state_dict = torch.load(head_network_path, map_location="cpu")
_logger.info(f"Loaded head weights from: {head_network_path}")
point_header_state_dict = torch.load(point_header_path, map_location="cpu")
_logger.info(f"Loaded encoder from: {point_header_path}")
# Create regressor.
# network = Regressor.create_from_split_state_dict(encoder_state_dict, head_state_dict)
network = Regressor.create_from_split_state_dict_with_point(encoder_state_dict, head_state_dict, point_header_state_dict)
# Setup for evaluation.
network = network.to(device)
network.eval()
# Save the outputs in the same folder as the network being evaluated.
output_dir = head_network_path.parent
scene_name = scene_path.name
# This will contain aggregate scene stats (median translation/rotation errors, and avg processing time per frame).
test_log_file = output_dir / f'test_{scene_name}_{opt.session}.txt'
_logger.info(f"Saving test aggregate statistics to: {test_log_file}")
# This will contain each frame's pose (stored as quaternion + translation) and errors.
pose_log_file = output_dir / f'poses_{scene_name}_{opt.session}.txt'
_logger.info(f"Saving per-frame poses and errors to: {pose_log_file}")
# Setup output files.
test_log = open(test_log_file, 'w', 1)
pose_log = open(pose_log_file, 'w', 1)
# Metrics of interest.
avg_batch_time = 0
num_batches = 0
# Keep track of rotation and translation errors for calculation of the median error.
rErrs = []
tErrs = []
# Percentage of frames predicted within certain thresholds from their GT pose.
pct10_5 = 0
pct5 = 0
pct2 = 0
pct1 = 0
# Generate video of training process
if opt.render_visualization:
# infer rendering folder from map file name
target_path = vutil.get_rendering_target_path(
opt.render_target_path,
opt.network)
ace_visualizer = ACEVisualizer(target_path,
opt.render_flipped_portrait,
opt.render_map_depth_filter,
reloc_vis_error_threshold=opt.render_pose_error_threshold)
# we need to pass the training set in case the visualiser has to regenerate the map point cloud
trainset = CamLocDataset(
scene_path / "train",
mode=0, # Default for ACE, we don't need scene coordinates/RGB-D.
image_height=opt.image_resolution,
load_kpts=False,
)
# Setup dataloader. Batch size 1 by default.
trainset_loader = DataLoader(trainset, shuffle=False, num_workers=2)
ace_visualizer.setup_reloc_visualisation(
frame_count=len(testset),
data_loader=trainset_loader,
network=network,
camera_z_offset=opt.render_camera_z_offset,
reloc_frame_skip=opt.render_frame_skip)
else:
ace_visualizer = None
# Testing loop.
pixel_grid_2HW = get_pixel_grid(network.OUTPUT_SUBSAMPLE)
pose_pred = PosePredictor()
last_image, last_points = None, None
testing_start_time = time.time()
with torch.no_grad():
for image_B1HW, _, gt_pose_B44, _, intrinsics_B33, _, _, filenames, gray_images in testset_loader:
t1 = time.time()
batch_start_time = time.time()
batch_size = image_B1HW.shape[0]
image_B1HW = image_B1HW.to(device, non_blocking=True)
# Predict scene coordinates.
with autocast(enabled=True):
if opt.test_mode > 0:
scene_coordinates_B3HW, scores = network.get_scene_coordinates_and_points(image_B1HW)
scores = scores.float()
keypoints, _ = scores_to_points(scores, opt.keypoint_threshold, opt.max_keypoints, opt.remove_border)
else:
scene_coordinates_B3HW = network(image_B1HW)
# We need them on the CPU to run RANSAC.
scene_coordinates_B3HW = scene_coordinates_B3HW.float().cpu()
if opt.test_mode > 0:
keypoints = [kpts.cpu() for kpts in keypoints]
# Each frame is processed independently.
for frame_idx, (scene_coordinates_3HW, gt_pose_44, intrinsics_33, frame_path, gray_image) in enumerate(
zip(scene_coordinates_B3HW, gt_pose_B44, intrinsics_B33, filenames, gray_images)):
t2 = time.time()
# Extract focal length and principal point from the intrinsics matrix.
focal_length = intrinsics_33[0, 0].item()
ppX = intrinsics_33[0, 2].item()
ppY = intrinsics_33[1, 2].item()
# We support a single focal length.
assert torch.allclose(intrinsics_33[0, 0], intrinsics_33[1, 1])
# Remove path from file name
frame_name = Path(frame_path).name
# Allocate output variable.
out_pose = torch.zeros((4, 4))
# Compute the pose via RANSAC.
# inlier_count = dsacstar.forward_rgb(
# scene_coordinates_3HW.unsqueeze(0),
# out_pose,
# opt.hypotheses,
# opt.threshold,
# focal_length,
# ppX,
# ppY,
# opt.inlieralpha,
# opt.maxpixelerror,
# network.OUTPUT_SUBSAMPLE,
# )
################################## PnP RANSAC Keypoints ################################
t3 = time.time()
good_estimation = False
if opt.test_mode > 0:
# kpts = track_info[1:, 1:]
# valid_kpts = kpts[kpt_mask[1:]]
valid_kpts = keypoints[frame_idx]
_, _, iH, iW = image_B1HW.shape
_, fH, fW = scene_coordinates_3HW.shape
scale_x, scale_y = float(fW) / iW, float(fH) / iH
scaled_kpts = valid_kpts.clone() - network.OUTPUT_SUBSAMPLE / 2
scaled_kpts[:, 0] *= scale_x
scaled_kpts[:, 1] *= scale_y
scaled_kpts = torch.round(scaled_kpts)
scaled_kpts[:, 0] = torch.clamp(scaled_kpts[:, 0], min=0, max=fW-1)
scaled_kpts[:, 1] = torch.clamp(scaled_kpts[:, 1], min=0, max=fH-1)
scaled_kpts = scaled_kpts.int()
index_tensor = scaled_kpts[:, 1] * fW + scaled_kpts[:, 0]
points_map_3d = scene_coordinates_3HW.permute(1, 2, 0).view(-1, 3)
points_3d = points_map_3d[index_tensor]
pixel_positions_B2HW = pixel_grid_2HW[:, :fH, :fW].clone() # It's 2xHxW (actual H and W) now.
points_map_2d = pixel_positions_B2HW.permute(1, 2, 0).view(-1, 2)
points_2d = points_map_2d[index_tensor]
inliers = torch.zeros(len(points_2d), dtype=torch.int)
inlier_count = dsacstar.forward_sequence_rgb(
points_3d,
points_2d,
inliers,
out_pose,
4,
focal_length,
ppX,
ppY,
opt.maxpixelerror)
good_estimation = inlier_count >= 20
if opt.test_mode == 1:
# predict pose using histroical information
gray_image = gray_image.numpy()
K = intrinsics_33.numpy()
predicted_pose, predicted_inlier_num, predict_points, track_status = pose_pred.predict(gray_image, K, opt)
# compute pose
post_pose, good_estimation = weight_average(predicted_pose, predicted_inlier_num, out_pose.numpy(), inlier_count)
# update pose predictor
if good_estimation:
out_pose = torch.from_numpy(post_pose)
if inlier_count > 50:
inliers = inliers > 0
good_points_2d = points_2d[inliers].numpy()
good_points_3d = points_3d[inliers].numpy()
good_valid_kpts = valid_kpts[inliers].numpy()
pixel_bias = np.abs(good_points_2d - good_valid_kpts)
accurate_idx = (pixel_bias[:, 0] < 4) & (pixel_bias[:, 1] < 4)
pose_pred.update(gray_image, out_pose.numpy(), predict_points, track_status, good_valid_kpts[accurate_idx], good_points_3d[accurate_idx], K)
t4 = time.time()
if not good_estimation:
inlier_count = dsacstar.forward_rgb(
scene_coordinates_3HW.unsqueeze(0),
out_pose,
opt.hypotheses,
opt.threshold,
focal_length,
ppX,
ppY,
opt.inlieralpha,
opt.maxpixelerror,
network.OUTPUT_SUBSAMPLE,
)
t5 = time.time()
########################################################################################
# Calculate translation error.
t_err = float(torch.norm(gt_pose_44[0:3, 3] - out_pose[0:3, 3]))
# Rotation error.
gt_R = gt_pose_44[0:3, 0:3].numpy()
out_R = out_pose[0:3, 0:3].numpy()
r_err = np.matmul(out_R, np.transpose(gt_R))
# Compute angle-axis representation.
r_err = cv2.Rodrigues(r_err)[0]
# Extract the angle.
r_err = np.linalg.norm(r_err) * 180 / math.pi
# print("inlier_count = {}".format(inlier_count))
# print("Rotation Error: {:.2f} deg, Translation Error: {:.1f} cm".format(r_err, 100*t_err))
_logger.info(f"Rotation Error: {r_err:.2f}deg, Translation Error: {t_err * 100:.1f}cm")
if ace_visualizer is not None:
ace_visualizer.render_reloc_frame(
query_pose=gt_pose_44.numpy(),
query_file=frame_path,
est_pose=out_pose.numpy(),
est_error=max(r_err, t_err*100),
sparse_query=opt.render_sparse_queries)
# Save the errors.
rErrs.append(r_err)
tErrs.append(t_err * 100)
# Check various thresholds.
if r_err < 5 and t_err < 0.1: # 10cm/5deg
pct10_5 += 1
if r_err < 5 and t_err < 0.05: # 5cm/5deg
pct5 += 1
if r_err < 2 and t_err < 0.02: # 2cm/2deg
pct2 += 1
if r_err < 1 and t_err < 0.01: # 1cm/1deg
pct1 += 1
# Write estimated pose to pose file (inverse).
out_pose = out_pose.inverse()
# Translation.
t = out_pose[0:3, 3]
# Rotation to axis angle.
rot, _ = cv2.Rodrigues(out_pose[0:3, 0:3].numpy())
angle = np.linalg.norm(rot)
axis = rot / angle
# Axis angle to quaternion.
q_w = math.cos(angle * 0.5)
q_xyz = math.sin(angle * 0.5) * axis
# Write to output file. All in a single line.
pose_log.write(f"{frame_name} "
f"{q_w} {q_xyz[0].item()} {q_xyz[1].item()} {q_xyz[2].item()} "
f"{t[0]} {t[1]} {t[2]} "
f"{r_err} {t_err} {inlier_count}\n")
t7 = time.time()
dt1 = t2 - t1
dt2 = t3 - t2
dt3 = t4 - t3
dt4 = t5 - t4
sum_t = t5 - t1
avg_batch_time += time.time() - batch_start_time
num_batches += 1
total_frames = len(rErrs)
assert total_frames == len(testset)
# Compute median errors.
tErrs.sort()
rErrs.sort()
median_idx = total_frames // 2
median_rErr = rErrs[median_idx]
median_tErr = tErrs[median_idx]
avg_rErr = sum(rErrs) / len(rErrs)
avg_tErr = sum(tErrs) / len(tErrs)
# Compute average time.
avg_time = avg_batch_time / num_batches
# Compute final metrics.
pct10_5 = pct10_5 / total_frames * 100
pct5 = pct5 / total_frames * 100
pct2 = pct2 / total_frames * 100
pct1 = pct1 / total_frames * 100
_logger.info("===================================================")
_logger.info("Test complete.")
_logger.info('Accuracy:')
_logger.info(f'\t10cm/5deg: {pct10_5:.1f}%')
_logger.info(f'\t5cm/5deg: {pct5:.1f}%')
_logger.info(f'\t2cm/2deg: {pct2:.1f}%')
_logger.info(f'\t1cm/1deg: {pct1:.1f}%')
_logger.info(f"Median Error: {median_rErr:.1f}deg, {median_tErr:.1f}cm")
_logger.info(f"Average Error: {avg_rErr:.1f}deg, {avg_tErr:.1f}cm")
_logger.info(f"Avg. processing time: {avg_time * 1000:4.1f}ms")
# Write to the test log file as well.
test_log.write(f"{median_rErr} {median_tErr} {avg_time}\n")
test_log.write(f'\t10cm/5deg: {pct10_5:.1f}%\n')
test_log.write(f'\t5cm/5deg: {pct5:.1f}%\n')
test_log.write(f'\t2cm/2deg: {pct2:.1f}%\n')
test_log.write(f'\t1cm/1deg: {pct1:.1f}%\n')
test_log.write(f"Median Error: {median_rErr:.1f}deg, {median_tErr:.1f}cm\n")
test_log.write(f"Average Error: {avg_rErr:.1f}deg, {avg_tErr:.1f}cm\n")
test_log.write(f"Avg. processing time: {avg_time * 1000:4.1f}ms\n")
test_log.close()
pose_log.close()