-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathutils.py
149 lines (116 loc) · 4.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# @Time : 2019/12/3 7:30 下午
# @Author: wuchenglong
import tensorflow as tf
import json,os
def build_vocab(corpus_file_list, vocab_file, tag_file):
words = set()
tags = set()
for file in corpus_file_list:
# words = words.union(set([line.strip().split()[0] for line in open(file, "r", encoding='utf-8').readlines()]))
# tags = tags.union(set([line.strip().split()[-1] for line in open(file, "r", encoding='utf-8').readlines()]))
for line in open(file, "r", encoding='utf-8').readlines():
line = line.strip()
if line == "end":
continue
try:
w,t = line.split()
words.add(w)
tags.add(t)
except Exception as e:
print(line.split())
# raise e
if not os.path.exists(vocab_file):
with open(vocab_file,"w") as f:
for index,word in enumerate(["<UKN>"]+list(words) ):
f.write(word+"\n")
tag_sort = {
"O": 0,
"B": 1,
"I": 2,
"E": 3,
}
tags = sorted(list(tags),
key=lambda x: (len(x.split("-")), x.split("-")[-1], tag_sort.get(x.split("-")[0], 100))
)
if not os.path.exists(tag_file):
with open(tag_file,"w") as f:
for index,tag in enumerate(["<UKN>"]+tags):
f.write(tag+"\n")
# build_vocab(["./data/train.utf8","./data/test.utf8"])
def read_vocab(vocab_file):
vocab2id = {}
id2vocab = {}
for index,line in enumerate([line.strip() for line in open(vocab_file,"r").readlines()]):
vocab2id[line] = index
id2vocab[index] = line
return vocab2id, id2vocab
# print(read_vocab("./data/tags.txt"))
def tokenize(filename,vocab2id,tag2id):
contents = []
labels = []
content = []
label = []
with open(filename, 'r', encoding='utf-8') as fr:
for line in [elem.strip() for elem in fr.readlines()][:500000]:
try:
if line != "end":
w,t = line.split()
content.append(vocab2id.get(w,0))
label.append(tag2id.get(t,0))
else:
if content and label:
contents.append(content)
labels.append(label)
content = []
label = []
except Exception as e:
content = []
label = []
contents = tf.keras.preprocessing.sequence.pad_sequences(contents, padding='post')
labels = tf.keras.preprocessing.sequence.pad_sequences(labels, padding='post')
return contents,labels
tag_check = {
"I":["B","I"],
"E":["B","I"],
}
def check_label(front_label,follow_label):
if not follow_label:
raise Exception("follow label should not both None")
if not front_label:
return True
if follow_label.startswith("B-"):
return False
if (follow_label.startswith("I-") or follow_label.startswith("E-")) and \
front_label.endswith(follow_label.split("-")[1]) and \
front_label.split("-")[0] in tag_check[follow_label.split("-")[0]]:
return True
return False
def format_result(chars, tags):
entities = []
entity = []
for index, (char, tag) in enumerate(zip(chars, tags)):
entity_continue = check_label(tags[index - 1] if index > 0 else None, tag)
if not entity_continue and entity:
entities.append(entity)
entity = []
entity.append([index, char, tag, entity_continue])
if entity:
entities.append(entity)
entities_result = []
for entity in entities:
if entity[0][2].startswith("B-"):
entities_result.append(
{"begin": entity[0][0] + 1,
"end": entity[-1][0] + 1,
"words": "".join([char for _, char, _, _ in entity]),
"type": entity[0][2].split("-")[1]
}
)
return entities_result
if __name__ == "__main__":
text = ['国','家','发','展','计','划','委','员','会','副','主','任','王','春','正']
tags = ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'E-ORG', 'O', 'O', 'O', 'B-PER', 'I-PER', 'E-PER']
entities_result= format_result(text,tags)
print(json.dumps(entities_result, indent=4, ensure_ascii=False))