-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSong.py
169 lines (147 loc) · 6.12 KB
/
Song.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas as pd
# from pprint import pprint
import spotipy
import spotipy.util as util
from load import get_standard_scalar
# Import StandardScaler object with transformed values
sc = get_standard_scalar()
class Song:
"""Class for song features from spotify"""
def __init__(self, artist, song, choice):
self.artist = artist
self.song = song
self.choice = choice
self.artist_score = self.get_artist_score()
def get_artist_score(self):
"""Determine the artist score by choice"""
if self.choice == 'Yes':
return 1
elif self.choice == 'No':
return 0
else:
return 0.5
@staticmethod
def authenticate():
"""Authenticate with spotify api"""
token = util.oauth2.SpotifyClientCredentials(
client_id='3e9662a5afe34512834f7c44eb39e7ab',
client_secret='79acff9ee271443a96656c3444bfe4f6')
cache_token = token.get_access_token()
spotify = spotipy.Spotify(cache_token)
sp = spotipy.Spotify(auth=cache_token)
# print('Authenticated')
return sp
@property
def song_features(self):
"""Get the spotify data for given song, artist"""
sp = self.authenticate()
try:
self.track_info = sp.search(q='artist:' + self.artist + ' track:' +
self.song,
type='track')
# pprint(self.track_info)
track_id = self.track_info['tracks']
track_id2 = track_id['items']
if track_id2 != []:
year = self.track_info['tracks']
year_1 = year['items']
year_2 = year_1[0]
year_3 = year_2['album']
year_4 = year_3['release_date']
year_5 = year_4.split('-')
if len(year_5) > 1:
# year_6 = year_5[0]
track_id3 = track_id2[0]
track_id4 = track_id3['id']
# month = year_5[1]
feat_t = sp.audio_features(tracks=track_id4)
# pprint(feat_t)
feat = feat_t[0]
danceability = feat['danceability']
energy = feat['energy']
key = feat['key']
loudness = feat['loudness']
mode = feat['mode']
speechiness = feat['speechiness']
acousticness = feat['acousticness']
instrumentalness = feat['instrumentalness']
liveness = feat['liveness']
valence = feat['valence']
tempo = feat['tempo']
self.features = {'danceability': danceability,
'energy': energy,
'key': key,
'loudness': loudness,
'mode': mode,
'speechiness': speechiness,
'acousticness': acousticness,
'instrumentalness': instrumentalness,
'liveness': liveness,
'valence': valence,
'tempo': tempo,
'artist_score': self.artist_score}
# print(features)
return self.features
except Exception as e:
print('Could not get data for', self.song, 'by', self.artist,
'Error:', e)
@song_features.setter
def song_features(self, features):
self.features = features
def clean_features(self):
"""Clean the data from spotify"""
data = pd.DataFrame([self.song_features])
# Make temporary data to match shape of dataframe in machine learning
# model
for i in range(0, 12):
if i % 2 == 0:
j = 0
else:
j = 1
temp = {'danceability': 0.8, 'energy': 0.7, 'key': i,
'loudness': -3, 'mode': j,
'speechiness': 0.08, 'acousticness': 0.6,
'instrumentalness': 0,
'liveness': 0.09, 'valence': 0.9, 'tempo': 96,
'artist_score': 0}
data = data.append(temp, ignore_index=True)
cols = ['danceability', 'energy', 'key', 'loudness', 'mode',
'speechiness',
'acousticness', 'instrumentalness', 'liveness', 'valence',
'tempo',
'artist_score']
data = data[cols]
mode = pd.get_dummies(data['mode'], drop_first=True)
key = pd.get_dummies(data['key'], drop_first=True)
data.drop(['mode', 'key'], axis=1, inplace=True)
data = pd.concat([data, mode, key], axis=1)
# Dropping all other temporary rows before using StandardScaler
data.drop(data.index[1:], inplace=True)
data = sc.transform(data)
return data
@property
def data(self):
"""Get machine learning model ready data"""
return self.clean_features()
def extract_trackinfo(self):
_ = self.song_features
# pprint(self.track_info)
return self.song_info()
def song_info(self):
"""Extract extra song info from track_info"""
item = self.track_info['tracks']['items'][0]
self.song_name = item['name']
self.artist_name = item['artists'][0]['name']
self.song_url = item['external_urls']['spotify']
self.popularity = item['popularity']
self.preview_url = item['preview_url']
self.preview_img_urls = item['album']['images'][0]['url']
return(self.song_name, self.artist_name, self.song_url,
self.popularity, self.preview_url, self.preview_img_urls)
if __name__ == '__main__':
user_song = Song(artist='the chainsmokers', song='Closer', choice='Yes')
# user_song.data
(song_name, artist_name, song_url, popularity, preview_url,
preview_img_urls) = user_song.extract_trackinfo()
print(song_name, artist_name, song_url, popularity,
preview_url, preview_img_urls)