-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathHexOddy.tex
24 lines (21 loc) · 1.06 KB
/
HexOddy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
%---------------------------Oddy---------------------------
\section{Oddy}
First we define the Oddy $O$ in terms of the Jacobian matrices $A_i$ from \S\ref{s:hex}:
\[
O(A_i) = \frac{\left| A_i^t A_i \right|^2 - \frac {1}{3}\left|A_i\right|^4}{\alpha_i^{\frac{4}{3}}}.
\]
The metric value is then the maximum Oddy over all the corners and the element center
\[
q = \max_{i\in\{0,1,\ldots,8\}}\left\{ O(A_i) \right\}.
\]
This can be interpreted as the maximum deviation of
the metric tensor ($A_i^tA_i$) from the identity matrix, evaluated at the corners and element center.
Note that if $\alpha_i \leq DBL\_MIN$ for any $i$, we set $q = DBL\_MAX$.
\hexmetrictable{Oddy}%
{$1$}% Dimension
{$[0,0.5]$}% Acceptable range
{$[0,DBL\_MAX]$}% Normal range
{$[0,DBL\_MAX]$}% Full range
{$0$}% Cube
{Adapted from \cite{odd:88}}% Citation
{v\_hex\_oddy}% Verdict function name