-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathTetDistortion.tex
36 lines (32 loc) · 1.32 KB
/
TetDistortion.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
%---------------------------Distortion---------------------------
\section{Distortion}
The distortion is a measure of how well-behaved the mapping from
parameter space to world coordinates is.
The parameter space is defined using a ``master'' tetrahedron
with vertices
\[
\begin{array}{lcrcrcrc}
\vec P_0 &= (& -1&,& -\frac{ \sqrt{3}}{3}&,& -\frac{2\sqrt{6}}{9}&)\\
\vec P_1 &= (& 1&,& -\frac{ \sqrt{3}}{3}&,& -\frac{2\sqrt{6}}{9}&)\\
\vec P_2 &= (& 0&,& \frac{2\sqrt{3}}{3}&,& -\frac{2\sqrt{6}}{9}&)\\
\vec P_3 &= (& 0&,& 0&,& \frac{4\sqrt{6}}{9}&)
\end{array}
\]
and volume $V_m$.
The behavior of the map is measured by sampling the determinant of the
Jacobian at Gauss points $G = \{g_k\}$.
The minimum of these is then used to scale the ratio of the
``master'' tetrahedron to the tetrahedron of interest:
\[
q = \frac{\min_k\{\det(J_{g_k})\} V_m}{V}
\]
Note that if $V < DBL\_MIN$, we set $q = DBL\_MAX$.
This metric is currently unsupported.
\tetmetrictable{distortion}%
{$1$}% Dimension
{$[0.5,1]$}% Acceptable range
{$[0,1]$}% Normal range
{$[-DBL\_MAX,DBL\_MAX]$}% Full range
{$0$}% Equilateral tet
{Adapted from \cite{ideas:xx}}% Citation
{v\_tet\_distortion}% Verdict function name