-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtilFuncs.py
210 lines (181 loc) · 7.91 KB
/
UtilFuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#Import Required Libraries
import torch
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets, transforms, models
from collections import OrderedDict
import argparse
#Returns DataLoaders for Train,Validation,Test Data
def load_data(where):
#Load Data Folders
for i in where:
where = str(i)
data_dir = where
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
#Perform Transforms on Image
train_t = transforms.Compose([transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
valid_t = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
test_t = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
#Load the datasets with ImageFolder
train_data = datasets.ImageFolder(train_dir,transform = train_t)
valid_data = datasets.ImageFolder(valid_dir,transform = valid_t)
test_data = datasets.ImageFolder(test_dir,transform = test_t)
#Using the image datasets and the trainforms, define the dataloaders
trainloader = torch.utils.data.DataLoader(train_data,batch_size = 50,shuffle=True)
validloader = torch.utils.data.DataLoader(valid_data,batch_size = 50)
testloader = torch.utils.data.DataLoader(test_data,batch_size = 50)
return train_data,trainloader,validloader,testloader
#Return Model,Criterion,Optimizer
def buildNN(arch,lr=0.001,dropout=0.5,hidden_units=4096,mode='gpu'):
if(arch=='vgg16'):
model = models.vgg16(pretrained=True)
elif(arch=='densenet121'):
model = models.densenet121(pretrained=True)
else:
print("Pls choose vgg16 or densenet121, Other networks are not available!")
for param in model.parameters():
param.requires_grad = False
if(arch=="vgg16"):
model.classifier = nn.Sequential(OrderedDict([
('fc1',nn.Linear(25088,hidden_units,bias=True)),
('relu1',nn.ReLU()),
('drop1',nn.Dropout(p=0.5)),
('fc2',nn.Linear(hidden_units,102,bias=True)),
('softmax1',nn.LogSoftmax(dim=1))]))
elif(arch=="densenet121"):
model.classifier = nn.Sequential(OrderedDict([
('fc1',nn.Linear(1024,hidden_units,bias=True)),
('relu1',nn.ReLU()),
('drop1',nn.Dropout(p=0.5)),
('fc2',nn.Linear(hidden_units,102,bias=True)),
('softmax1',nn.LogSoftmax(dim=1))]))
else:
print("Pls try to use vgg16 or densenet121")
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr)
if torch.cuda.is_available() and mode == 'gpu':
model.cuda()
return model, criterion, optimizer
#Validate Model
def validation(model, testloader, criterion,mode='gpu'):
val_loss = 0
accuracy = 0
for inputs, labels in testloader:
if torch.cuda.is_available() and mode=='gpu':
inputs, labels = inputs.to('cuda'), labels.to('cuda')
output = model.forward(inputs)
val_loss += criterion(output, labels).item()
ps = torch.exp(output)
equality = (labels.data == ps.max(dim=1)[1])
accuracy += equality.type(torch.FloatTensor).mean()
return val_loss, accuracy
#Train our Neural Network
def trainNN(model,criterion,optimizer,loader1, loader2, epochs=5,print_every=25,mode='gpu'):
steps=0
running_loss=0
print("----------------Training Started------------------\n")
for e in range(epochs):
for inputs,labels in loader1:
steps+=1
if torch.cuda.is_available() and mode=='gpu':
inputs, labels = inputs.to('cuda'), labels.to('cuda')
optimizer.zero_grad()
#Forwara and Backward Propogation
logps = model.forward(inputs)
loss = criterion(logps,labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
valid_loss = 0
accuracy = 0
model.eval()
#VALIDATION
with torch.no_grad():
valid_loss, accuracy = validation(model, loader2, criterion)
print(f"Epoch {e+1}/{epochs}.. "
f"Training loss: {running_loss/print_every:.3f}.. "
f"Validation loss: {valid_loss/len(loader2):.3f}.. "
f"Validation accuracy: {accuracy/len(loader2):.3f}")
running_loss = 0
model.train()
print("\n---------------Training Completed---------------")
#Save Checkpoint
def save_checkpoint(model,train_data ,path='./checkpoint.pth',structure ='vgg16', hidden_layer1=4096,dropout=0.5,lr=0.001,epochs=5):
model.cpu
model.class_to_idx = train_data.class_to_idx
chpt = {'structure' :structure,
'hidden_layer1':hidden_layer1,
'dropout':dropout,
'lr':lr,
'no_of_epochs':epochs,
'state_dict':model.state_dict(),
'class_to_idx':model.class_to_idx}
if structure=="resnet101":
chpt['fc'] = model.fc
else:
chpt['classifier'] = model.classifier
if(path!="./checkpoint.pth"):
path = path + "/checkpoint.pth"
torch.save(chpt,path)
print("Model Saved")
#Load Checkpoint
def load_checkpoint(path='checkpoint.pth'):
for i in path:
path=str(i)
checkpoint = torch.load(path)
structure = checkpoint['structure']
hidden_layer1 = checkpoint['hidden_layer1']
dropout = checkpoint['dropout']
lr=checkpoint['lr']
model,_,_ = buildNN(structure,lr,dropout,hidden_layer1)
model.class_to_idx = checkpoint['class_to_idx']
model.load_state_dict(checkpoint['state_dict'])
return model
#Process PIL Image
def process_image(img_path):
for i in img_path:
path = str(i)
img = Image.open(path)
process = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
final_img = process(img)
return final_img
#Make Prediction
def predict(image_path, model, topk=5,power='gpu'):
if torch.cuda.is_available() and power=='gpu':
model.to('cuda:0')
model.eval()
img = process_image(image_path)
img = img.unsqueeze_(0)
img = img.float()
if power == 'gpu':
with torch.no_grad():
output = model.forward(img.cuda())
else:
with torch.no_grad():
output=model.forward(img)
probability = torch.exp(output)
return probability.topk(topk)