forked from joemehr/MachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeCost.m
35 lines (25 loc) · 845 Bytes
/
computeCost.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% Returned variable
J = 0;
% Compute the cost of a particular choice of theta.
% hypothesis = mx1 column vector
% X = mxn matrix
% theta = nx1 column vector
hypothesis = X * theta;
% errors = mx1 column vector
% y = mx1 column vector
errors = hypothesis .- y;
% square all elements individually within
% column vector errors
% squareOfErrors = mx1 column vector
squareOfErrors = (errors).^2;
% sumOfSquareErrors = single number
sumOfSquareErrors = sum(squareOfErrors);
% J = single number
J = 1/(2 * m) * sumOfSquareErrors;
end