-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsoccer_train.py
216 lines (164 loc) · 8.85 KB
/
soccer_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from models.frontnet import frontnetbn
import student_models.resnet as resnet
from logger import Logging
import tensorboard_logger
from models.model_builder import build_model
from opts import arg_parser
from soccer_utils import soccer_loaders, expand_model, get_criterions, save_n_restore_model, make_vidtrackers
import numpy as np
import sys
import argparse
import tqdm
def print_args(args, backbone_args):
print("---BACKBONE CONFIGS---")
s = "==========================================\n"
for arg, content in backbone_args.__dict__.items():
s += "{}:{}\n".format(arg, content)
print(s)
print("---FINE TUNE CONFIGS---")
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
print(s)
def train_jointnet(args, loaders, criterions, model, front_net, running_loss = 0.0, loss_log=100):
#cudnn.benchmark = args.cudnn_benchmark
model.to(args.device).eval()
model.fc.requires_grad = True
front_net.to(args.device).train()
loss_fn, optimizer, scheduler = criterions['loss'], criterions['optimizer'], criterions['scheduler']
for epoch in tqdm.tqdm(range(args.epochs)):
for i, (data, labels, _) in enumerate(loaders['train']):
data, labels = data.to(args.device), labels.to(args.device)
if args.stand_alone:
data = data.view(-1, data.shape[-1] * data.shape[-2])
preds = front_net(model(data))
else:
preds = front_net(model(data))
if args.loss == 'KLD':
#raise ValueError(preds.shape, preds[-1].shape, labels.shape)
loss = loss_fn(preds[:0], labels)
else:
loss = loss_fn(preds, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % loss_log == loss_log-1: # print every 100 mini-batches
print(f'Epoch:{epoch+1} || loss------> {(running_loss / loss_log):.3f}')
running_loss = 0.0
scheduler.step()
return model, front_net, optimizer, scheduler
def eval_jointnet(args, loaders, model, front_net, tracker):
model.to(args.device).eval()
if front_net:
front_net.to(args.device).eval()
pbar = tqdm.tqdm(loaders['test'], unit='batches', leave=False, total=len(loaders['test']))
correct, total, vid_correct, vid_total = 0, 0, 0, 0
with torch.no_grad():
for images, labels, vid_id in pbar:
images, labels = images.to(args.device), labels.to(args.device)
if front_net:
outputs = front_net(model(images))
else:
outputs = model(images)
for idx, i in enumerate(outputs):
if torch.argmax(i) == labels[idx]:
tracker[vid_id[idx]]['correct'] += 1
tracker[vid_id[idx]]['total'] += 1
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
for video, metrics in tracker.items():
if metrics['correct'] >= (metrics['total']/2):
vid_correct+=1
vid_total+=1
print('~~~ON A FRAME BASIS~~~')
print(f'No. of correct predictions: {correct} || No. of total samples: {total}')
print('Accuracy of fine-tuned network on test videos: %.3f %%' % (
100 * correct / total))
print('~~~ON A VIDEO BASIS~~~')
print(f'No. of correct predictions: {vid_correct} || No. of total samples: {vid_total}')
print('Accuracy of fine-tuned network on test videos: %.3f %%' % (
100 * vid_correct / vid_total))
return (100 * correct / total, 100 * vid_correct / vid_total)
def main():
parser = argparse.ArgumentParser(description='Fine Tune on soccer dataset.')
parser.add_argument('--base_path', type=str, default='/home/SarosijBose/HAR/KDHAR/soccer/images')
parser.add_argument('--stand_alone', type=bool, default=False)
parser.add_argument('--epochs', type=int, default=100, help='Train Epochs')
parser.add_argument('--runs', type=int, default=5, help='Sample results')
parser.add_argument('--bs', type=int, default=64, help='Batch Size')
parser.add_argument('--loss', type=str, default='CrossEntropy', choices=['nll', 'CrossEntropy', 'KLD'])
parser.add_argument('--optim', type=str, default='Adam', choices=['Adam', 'SGD'])
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate')
parser.add_argument('--workers', type=int, default=12, help='No. of workers')
parser.add_argument('--input_size', default=224, type=int, metavar='N', help='spatial size')
parser.add_argument('--gpu',help='Model Choice', default='0')
parser.add_argument('--save_ckpt', type=bool, default=True)
parser.add_argument('--eval_only', type=bool, default=True)
parser.add_argument('--eval_ckpt', type=str, default=None)
parser.add_argument('--distill_ckpt', type=str, default='jointnet')
parser.add_argument('--log_file', type=str, default='vid_val_student_ofR101')
args = parser.parse_args()
args.device = f'cuda:{args.gpu}' if torch.cuda.is_available() else 'cpu'
global backbone_args
backbone_parser = arg_parser()
backbone_args = backbone_parser.parse_args()
if backbone_args.dataset == 'kinetics400':
backbone_args.num_classes = 400
args.log_dir = './log/' + args.log_file + f'/{args.log_file}.log'
sys.stdout = Logging(args, args.log_dir)
print_args(args, backbone_args)
loaders, labels = soccer_loaders(args, batch_size=args.bs)
val_vidtrackers = make_vidtrackers(args, root_dir=args.base_path + '/val')
accuracies = []
best_acc = 0
if args.eval_only:
if args.eval_ckpt:
model, _ = build_model(backbone_args, test_mode=True)
model = expand_model(backbone_args, model)
front_net = frontnetbn(stand_alone=args.stand_alone, distill=False)
criterions = get_criterions(args, front_net)
model, front_net = save_n_restore_model(args, model, front_net, acc=args.eval_ckpt.split('_')[0],
criterions=criterions, optimizer=None, scheduler=None,
restore=args.eval_only)
eval_frame_acc, eval_vid_acc = eval_jointnet(args, loaders, model, front_net, tracker=val_vidtrackers)
print(f"Evaluation accuracy obtained on a frame-frame basis: {eval_frame_acc:.3f} %")
print(f"Evaluation accuracy obtained on video basis: {eval_vid_acc:.3f} %")
elif args.distill_ckpt:
student_model = resnet.ResNet18(num_classes=4)
args.optim == 'SGD'
criterions = get_criterions(args, student_model)
student_model, _ = save_n_restore_model(args, model=student_model, front_net=None, acc=None,
criterions=criterions, optimizer=criterions['optimizer'],
scheduler=None, restore=args.eval_only)
eval_frame_acc, eval_vid_acc = eval_jointnet(args, loaders, student_model,
front_net=None, tracker=val_vidtrackers)
print(f"Evaluation accuracy obtained on a frame-frame basis: {eval_frame_acc:.3f} %")
print(f"Evaluation accuracy obtained on video basis: {eval_vid_acc:.3f} %")
else:
for _ in range(args.runs):
model, _ = build_model(backbone_args, test_mode=True)
model = expand_model(backbone_args, model)
front_net = frontnetbn(stand_alone=args.stand_alone, distill=False)
criterions = get_criterions(args, front_net)
model, front_net, optimizer, scheduler = train_jointnet(args, loaders, criterions=criterions,
model=model, front_net=front_net)
print('------Training complete------')
eval_frame_acc, eval_vid_acc = eval_jointnet(args, loaders, model, front_net)
accuracies.append(eval_frame_acc)
print('------Evaluation complete. Saving best available checkpoint------')
if eval_vid_acc > best_acc:
best_acc = eval_vid_acc
if args.save_ckpt:
save_n_restore_model(args, model, front_net, eval_vid_acc, criterions=criterions,
optimizer=optimizer, scheduler=scheduler, restore=args.eval_only)
print(f"Mean accuracy obtained over {args.runs} runs: {np.mean(accuracies):.3f}")
print(f"Best accuracy obtained over {args.runs} runs: {best_acc:.3f}")
print([*accuracies])
if __name__ == '__main__':
main()