-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_student.py
268 lines (213 loc) · 11.4 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import logging
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torch.autograd import Variable
from tqdm import tqdm
import kd_utils as utils
import student_models.net as net
import student_models.data_loader as data_loader
import student_models.resnet as resnet
from evaluate import evaluate, evaluate_kd
from soccer_utils import (soccer_loaders, get_loaders, expand_model, get_criterions,
save_n_restore_model, make_vidtrackers)
from models.model_builder import build_model
from models.frontnet import frontnetbn
from opts import arg_parser
def train_kd(args, model, backbone_model, front_net, teacher_model, optimizer, loss_fn_kd, dataloader, metrics, params):
model.train()
if teacher_model:
teacher_model.eval()
if backbone_model:
backbone_model.to(args.device).eval()
if front_net:
front_net.to(args.device).eval()
# summary for current training loop and a running average object for loss
summ = []
loss_avg = utils.RunningAverage()
with tqdm(total=len(dataloader)) as t:
for i, (train_batch, labels_batch, _) in enumerate(dataloader):
if params.cuda:
train_batch, labels_batch = train_batch.cuda(non_blocking=True), \
labels_batch.cuda(non_blocking=True)
# convert to torch Variables
train_batch, labels_batch = Variable(train_batch), Variable(labels_batch)
output_batch = model(train_batch)
with torch.no_grad():
if args.dataset == 'Kinetics400':
output_teacher_batch = teacher_model(train_batch)
elif args.dataset == 'Soccer':
output_teacher_batch = front_net(backbone_model(train_batch))
if params.cuda:
output_teacher_batch = output_teacher_batch.cuda(non_blocking=True)
loss = loss_fn_kd(output_batch, labels_batch, output_teacher_batch, params)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Evaluate summaries only once in a while
if i % params.save_summary_steps == 0:
# extract data from torch Variable, move to cpu, convert to numpy arrays
output_batch = output_batch.data.cpu().numpy()
labels_batch = labels_batch.data.cpu().numpy()
# compute all metrics on this batch
summary_batch = {metric:metrics[metric](output_batch, labels_batch)
for metric in metrics}
summary_batch['loss'] = loss.data.cpu().numpy()
summ.append(summary_batch)
# update the average loss
loss_avg.update(loss.data)
t.set_postfix(loss='{:05.3f}'.format(loss_avg()))
t.update()
# compute mean of all metrics in summary
metrics_mean = {metric:np.mean([x[metric] for x in summ]) for metric in summ[0]}
metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in metrics_mean.items())
logging.info("- Train metrics: " + metrics_string)
def train_and_evaluate_kd(args, model, teacher_model, train_dataloader, val_dataloader, optimizer,
loss_fn_kd, metrics, params, model_dir, backbone_model, front_net):
"""Train the model and evaluate every epoch.
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(args.model_dir, args.restore_file + '.pth.tar')
logging.info("Restoring parameters from {}".format(restore_path))
utils.load_checkpoint(restore_path, model, optimizer)"""
best_val_acc = 0.0
# Tensorboard logger setup
# board_logger = utils.Board_Logger(os.path.join(model_dir, 'board_logs'))
if params.model_version == "resnet18_distill":
scheduler = StepLR(optimizer, step_size=150, gamma=0.1)
for epoch in range(params.num_epochs):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
# compute number of batches in one epoch (one full pass over the training set)
if args.dataset == 'Kinetics400':
train_kd(args, model, backbone_model, front_net, teacher_model, optimizer, loss_fn_kd,
train_dataloader, metrics, params)
elif args.dataset == 'Soccer':
train_kd(args, model, backbone_model, front_net, teacher_model, optimizer, loss_fn_kd,
train_dataloader, metrics, params)
# Evaluate for one epoch on validation set
val_metrics = evaluate_kd(model, val_dataloader, metrics, params)
val_acc = val_metrics['accuracy']
is_best = val_acc>=best_val_acc
# Save weights
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict' : optimizer.state_dict()},
is_best=is_best,
checkpoint=model_dir)
# If best_eval, best_save_path
if is_best:
logging.info("- Found new best accuracy")
best_val_acc = val_acc
# Save best val metrics in a json file in the model directory
best_json_path = os.path.join(model_dir, "metrics_val_best_weights.json")
utils.save_dict_to_json(val_metrics, best_json_path)
# Save latest val metrics in a json file in the model directory
last_json_path = os.path.join(model_dir, "metrics_val_last_weights.json")
utils.save_dict_to_json(val_metrics, last_json_path)
scheduler.step()
# #============ TensorBoard logging: uncomment below to turn in on ============#
# # (1) Log the scalar values
# info = {
# 'val accuracy': val_acc
# }
# for tag, value in info.items():
# board_logger.scalar_summary(tag, value, epoch+1)
# # (2) Log values and gradients of the parameters (histogram)
# for tag, value in model.named_parameters():
# tag = tag.replace('.', '/')
# board_logger.histo_summary(tag, value.data.cpu().numpy(), epoch+1)
# # board_logger.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(), epoch+1)
def main():
parser = argparse.ArgumentParser(description='Train various student models.')
parser.add_argument('--base_path', type=str, default='/home/SarosijBose/HAR/KDHAR/soccer/images')
parser.add_argument('--stand_alone', type=bool, default=False)
parser.add_argument('--dataset', type=str, default='Soccer', choices=['Kinetics400', 'Soccer'])
parser.add_argument('--epochs', type=int, default=100, help='Train Epochs')
parser.add_argument('--bs', type=int, default=64, help='Batch Size')
parser.add_argument('--loss', type=str, default='CrossEntropy', choices=['nll', 'CrossEntropy', 'KLD'])
parser.add_argument('--optim', type=str, default='Adam', choices=['Adam', 'SGD'])
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate')
parser.add_argument('--workers', type=int, default=12, help='No. of workers')
parser.add_argument('--gpu',help='Model Choice', default='0')
parser.add_argument('--input_size', default=224, type=int, metavar='N', help='spatial size')
parser.add_argument('--eval_ckpt', type=str, default='58.863_CrossEntropy_0.0001_train_n_val6')
parser.add_argument('--model_dir', default='experiments/resnet18_distill/jointnet_teacher')
parser.add_argument('--restore_file', default=None,
help="Optional, name of the file in --model_dir \
containing weights to reload before training")
args = parser.parse_args()
args.device = f'cuda:{args.gpu}' if torch.cuda.is_available() else 'cpu'
# Load the parameters from json file
json_path = os.path.join(args.model_dir, 'params.json')
assert os.path.isfile(json_path), "No json configuration file found at {}".format(json_path)
params = utils.Params(json_path)
global backbone_args
backbone_parser = arg_parser()
backbone_args = backbone_parser.parse_args()
if backbone_args.dataset == 'kinetics400':
backbone_args.num_classes = 400
if args.dataset == 'Soccer':
args.num_classes = 4
else:
args.num_classes = 400
# use GPU if available
params.cuda = torch.cuda.is_available()
# Set the random seed for reproducible experiments
random.seed(230)
torch.manual_seed(230)
if params.cuda: torch.cuda.manual_seed(230)
# Set the logger
utils.set_logger(os.path.join(args.model_dir, 'train.log'))
val_vidtrackers = make_vidtrackers(args, root_dir=args.base_path + '/val')
if params.model_version == 'resnet18_distill':
model = resnet.ResNet18(num_classes=args.num_classes).cuda() if params.cuda else resnet.ResNet18()
optimizer = optim.SGD(model.parameters(), lr=params.learning_rate,
momentum=0.9, weight_decay=5e-4)
# fetch loss function and metrics definition in model files
loss_fn_kd = net.loss_fn_kd
metrics = resnet.metrics
"""
Specify the pre-trained teacher models for knowledge distillation
"""
if params.teacher == "tam":
teacher_model, _ = build_model(backbone_args, test_mode=True)
teacher_model = teacher_model.cuda() if params.cuda else teacher_model
front_net = backbone_model = None
elif params.teacher == "jointnet":
backbone_model, _ = build_model(backbone_args, test_mode=True)
backbone_model = expand_model(backbone_args, backbone_model)
front_net = frontnetbn(stand_alone=args.stand_alone, distill=True)
criterions = get_criterions(args, front_net)
args.distill_ckpt = False
backbone_model, front_net = save_n_restore_model(args, backbone_model, front_net, acc=args.eval_ckpt.split('_')[0],
criterions=criterions, optimizer=None, scheduler=None,
restore=True)
#teacher_model = front_net(model()).cuda() if params.cuda else teacher_model
teacher_model = None
# Create the input data pipeline
logging.info("Loading the datasets...")
if args.dataset == 'Kinetics400':
train_dl, dev_dl = get_loaders(args=backbone_args, model=teacher_model)
elif args.dataset == 'Soccer':
loaders, labels = soccer_loaders(args, batch_size=args.bs)
train_dl, dev_dl = loaders['train'], loaders['test']
logging.info("- done.")
# Train the model with KD
logging.info("Experiment - model version: {}".format(params.model_version))
logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
logging.info("First, loading the teacher model and computing its outputs...")
if args.dataset == 'Kinetics400':
train_and_evaluate_kd(args, model, teacher_model, train_dl, dev_dl, optimizer, loss_fn_kd,
metrics, params, args.model_dir, backbone_model, front_net)
else:
train_and_evaluate_kd(args, model, teacher_model, train_dl, dev_dl, optimizer, loss_fn_kd,
metrics, params, args.model_dir, backbone_model=backbone_model, front_net=front_net)
if __name__ == '__main__':
main()