-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtr_lsddm.py
537 lines (405 loc) · 21.1 KB
/
tr_lsddm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import logging
from argparse import ArgumentParser
import matplotlib.pyplot as plt
from copy import deepcopy
import numpy as np
#from tensorboardX import SummaryWriter
import torch
from torch.optim.lr_scheduler import LambdaLR
from imitation_cl.logging.utils import custom_logging_setup, read_dict, write_dict, Dictobject, NumpyArrayEncoder
from imitation_cl.data.utils import get_minibatch_extended as get_minibatch
from imitation_cl.data.lasa import LASAExtended
from imitation_cl.data.helloworld import HelloWorldExtended
from imitation_cl.data.robottasks import RobotTasksExtended, RobotTasksPositionOrientation
from imitation_cl.train.utils import check_cuda, set_seed, get_sequence
from imitation_cl.plot.trajectories import streamplot
from imitation_cl.model.node import NODE
from imitation_cl.model.lsddm import configure
from imitation_cl.model.lsddm_t import configure as configure_t
from imitation_cl.metrics.traj_metrics import mean_swept_error, mean_frechet_error_fast as mean_frechet_error, dtw_distance_fast as dtw_distance
from imitation_cl.metrics.ori_metrics import quat_traj_distance
import os
import numpy as np
import time
from tqdm import tqdm, trange
import torch
import torch.optim as optim
# PyTorch bug: https://github.com/pytorch/pytorch/issues/49285
import warnings
warnings.filterwarnings("ignore", message="Setting attributes on ParameterList is not supported.")
def parse_args(return_parser=False):
parser = ArgumentParser()
parser.add_argument('--data_dir', type=str, required=True, help='Location of dataset')
parser.add_argument('--num_iter', type=int, required=True, help='Number of training iterations')
parser.add_argument('--tsub', type=int, default=20, help='Length of trajectory subsequences for training')
parser.add_argument('--replicate_num', type=int, default=0, help='Number of times the final point of the trajectories should be replicated for training')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--tnet_dim', type=int, default=2, help='Dimension of target network input and output')
parser.add_argument('--fhat_layers', type=int, required=True, help='Number of hidden layers in the fhat of target network')
parser.add_argument('--explicit_time', type=int, default=0, help='1: Use time as an explicit network input, 0: Do not use time')
parser.add_argument('--lr_change_iter', type=int, default=-1, help='-1 or 0: No LR scheduler, >0: Number of iterations after which initial LR is divided by 10')
# Scaling term for tangent vectors for learning orientation
parser.add_argument('--tangent_vec_scale', type=float, default=1.0, help='Tangent vector scaling term')
parser.add_argument('--lsddm_a', type=float, default=0.5)
parser.add_argument('--lsddm_projfn', type=str, default='PSD-REHU', help='LSDDM projection function')
parser.add_argument('--lsddm_projfn_eps', type=float, default=0.0001)
parser.add_argument('--lsddm_smooth_v', type=int, default=0)
parser.add_argument('--lsddm_hp', type=int, default=60)
parser.add_argument('--lsddm_h', type=int, default=1000)
parser.add_argument('--lsddm_rehu', type=float, default=0.01)
parser.add_argument('--dummy_run', type=int, default=0, help='1: Dummy run, no evaluation, 0: Actual training run')
parser.add_argument('--data_class', type=str, required=True, help='Dataset class for training')
parser.add_argument('--seed', type=int, required=True, help='Seed for reproducability')
parser.add_argument('--seq_file', type=str, required=True, help='Name of file containing sequence of demonstration files')
parser.add_argument('--log_dir', type=str, default='logs/', help='Main directory for saving logs')
parser.add_argument('--description', type=str, required=True, help='String identifier for experiment')
# Plot traj or not
parser.add_argument('--plot_traj', type=int, default=1, help='1: Plot the traj plots, 0: Dont plot traj_plots')
# Plot vectorfield or not
parser.add_argument('--plot_vectorfield', type=int, default=1, help='1: Plot vector field in the traj plots, 0: Dont plot vector field')
# Args for plot formatting
parser.add_argument('--plot_fs', type=int, default=10, help='Fontsize to be used in the plots')
parser.add_argument('--figw', type=float, default=16.0, help='Plot width')
parser.add_argument('--figh', type=float, default=3.3, help='Plot height')
if return_parser:
# This is used by the slurm creator script
# When running this script directly, this has no effect
return parser
else:
args = parser.parse_args()
return args
def train_task(args, task_id, tnet, node, device, pbar=trange, writer=None):
starttime = time.time()
filenames = get_sequence(args.seq_file)
dataset = None
if args.data_class == 'LASA':
datafile = os.path.join(args.data_dir, filenames[task_id])
dataset = LASAExtended(datafile, seq_len=args.tsub, norm=True, device=device)
# Goal position at origin
dataset.zero_center()
elif args.data_class == 'HelloWorld':
dataset = HelloWorldExtended(data_dir=args.data_dir, filename=filenames[task_id], device=device)
# Goal position at origin
dataset.zero_center()
elif args.data_class == 'RobotTasksPositionOrientation':
dataset = RobotTasksPositionOrientation(data_dir=args.data_dir, datafile=filenames[task_id], device=device, scale=args.tangent_vec_scale)
# Goal position at origin
dataset.zero_center()
else:
raise NotImplementedError(f'Unknown dataset class {args.data_class}')
node.set_target_network(tnet)
#node.method = args.solver # method should be set while initializing node
tnet.train()
node.train()
node = node.to(device)
# For optimizing the weights and biases of the NODE
theta_optimizer = optim.Adam(node.target_network.parameters(), lr=args.lr)
# Apply learning scheduler if needed
if args.lr_change_iter > 0:
theta_lambda = lambda epoch: 1.0 if (epoch < args.lr_change_iter) else 0.1
theta_scheduler = LambdaLR(theta_optimizer, lr_lambda=theta_lambda)
best_loss = np.inf
best_iter = 0
# Start training iterations
for iteration in pbar(args.num_iter):
theta_optimizer.zero_grad()
# Train using the translated trajectory (with goal at the origin)
t, y_all = get_minibatch(dataset.t[0], dataset.pos_goal_origin, nsub=None, tsub=args.tsub, dtype=torch.float)
# We use the timesteps associated with the first sequence
# Starting points
y_start = y_all[:,0].float()
y_start.requires_grad = True
# Predicted trajectories - forward simulation
y_hat = node(t.float(), y_start)
# MSE
loss = ((y_hat-y_all)**2).mean()
# Log the loss in tensorboard
if writer is not None:
writer.add_scalar(f'task_loss/task_{task_id}', loss.item(), iteration)
# Calling loss_task.backward computes the gradients w.r.t. the loss for the
# current task.
loss.backward()
# Update the NODE params
theta_optimizer.step()
if args.lr_change_iter > 0:
theta_scheduler.step()
if loss.item() <= best_loss:
best_node = deepcopy(node)
best_loss = loss.item()
best_iter = int(iteration)
endtime = time.time()
duration = endtime - starttime
#return node, duration
return best_node, duration, best_loss, best_iter
def eval_task(args, task_id, node, device, ax=None):
node = node.to(device)
filenames = get_sequence(args.seq_file)
if args.data_class == 'LASA':
datafile = os.path.join(args.data_dir, filenames[task_id])
dataset = LASAExtended(datafile, seq_len=args.tsub, norm=True, device=device)
# Goal position at origin
dataset.zero_center()
elif args.data_class == 'HelloWorld':
dataset = HelloWorldExtended(data_dir=args.data_dir, filename=filenames[task_id], device=device)
# Goal position at origin
dataset.zero_center()
elif args.data_class == 'RobotTasksPositionOrientation':
dataset = RobotTasksPositionOrientation(data_dir=args.data_dir, datafile=filenames[task_id], device=device, scale=args.tangent_vec_scale)
# Goal position at origin
dataset.zero_center()
else:
raise NotImplementedError(f'Unknown dataset class {args.data_class}')
# Set the target network in the NODE
#node.set_target_network(tnet)
node = node.float()
node.eval()
# The time steps
t = dataset.t[0].float()
# The starting position
# (n,d-dimensional, where n is the num of demos and
# d is the dimension of each point)
#y_start = torch.unsqueeze(dataset.pos[0,0], dim=0)
# Use the translated trajectory (goal at origin)
y_start = dataset.pos_goal_origin[:,0]
y_start = y_start.float()
y_start.requires_grad = True
# The entire demonstration trajectory
y_all = dataset.pos.float()
# The predicted trajectory is computed in a piecemeal fashion
# Predicted trajectory
t_step = 20
t_start = 0
t_end = t_start + t_step
y_start = y_start
y_hats = list()
i = 0
while t_end <= y_all.shape[1]:
i += 1
y_hat = node(t[t_start:t_end], y_start)
y_hats.append(y_hat)
y_start = y_hat[:,-1,:].detach().clone()
y_start.requires_grad = True
t_start = t_end
t_end = t_start + t_step
y_hat_zeroed = torch.cat(y_hats, 1)
y_hat = dataset.unzero_center(y_hat_zeroed)
y_hat_np = y_hat.cpu().detach().numpy()
#y_hats_np = [yy.cpu().detach().numpy() for yy in y_hats]
#y_hat_np = np.concatenate(y_hats_np, axis=1)
# Translate goal to away from the origin
#y_hat_np = dataset.unzero_center(y_hat_np)
# Compute trajectory metrics
y_all_np = y_all.cpu().detach().numpy()
# De-normalize the data before computing trajectories
y_all_np_denorm = dataset.denormalize(y_all_np)
y_hat_np_denorm = dataset.denormalize(y_hat_np)
if args.data_class == 'RobotTasksPositionOrientation':
# Separate the position and rotation vectors
# Predictions
position_hat_np = y_hat_np_denorm[:,:,:3]
rotation_hat_np = y_hat_np_denorm[:,:,3:]
# Ground truth
position_all_np = y_all_np_denorm[:,:,:3]
rotation_all_np = y_all_np_denorm[:,:,3:]
# Convert predicted rotation trajectory from tangent vectors to quaternions
q_hat_np = dataset.from_tangent_plane(rotation_hat_np)
# Compute metrics for position
metric_swept_err, metric_swept_errs = mean_swept_error(position_all_np, position_hat_np)
metric_frechet_err, metric_frechet_errs = mean_frechet_error(position_all_np, position_hat_np)
metric_dtw_err, metric_dtw_errs = dtw_distance(position_all_np, position_hat_np)
# Compute metrics for quaternion
metric_quat_err, metric_quat_errs = quat_traj_distance(dataset.rotation_quat, q_hat_np)
# Store the metrics
eval_traj_metrics = {'swept': metric_swept_err,
'frechet': metric_frechet_err,
'dtw': metric_dtw_err,
'quat_error': metric_quat_err}
# Convert np arrays to list so that these can be written to JSON
eval_traj_metric_errors = {'swept': metric_swept_errs.tolist(),
'frechet': metric_frechet_errs.tolist(),
'dtw': metric_dtw_errs.tolist(),
'quat_error': metric_quat_errs.tolist()}
else:
# Compute the error metric (array of metrics for each trajectory in the ground truth)
metric_dtw_err, metric_dtw_errs = dtw_distance(y_all_np_denorm, y_hat_np_denorm)
metric_frechet_err, metric_frechet_errs = mean_frechet_error(y_all_np_denorm, y_hat_np_denorm)
metric_swept_err, metric_swept_errs = mean_swept_error(y_all_np_denorm, y_hat_np_denorm)
eval_traj_metrics = {'swept': metric_swept_err,
'frechet': metric_frechet_err,
'dtw': metric_dtw_err}
# Store the metric errors
# Convert np arrays to list so that these can be written to JSON
eval_traj_metric_errors = {'swept': metric_swept_errs.tolist(),
'frechet': metric_frechet_errs.tolist(),
'dtw': metric_dtw_errs.tolist()}
plot_data = {'t': t.detach().cpu().numpy(),
'y_all': dataset.pos_goal_origin.cpu().detach().numpy(),
'y_hat': y_hat_zeroed.cpu().detach().numpy()}
return eval_traj_metrics, eval_traj_metric_errors, plot_data
def train_all(args):
# Create logging folder and set up console logging
save_dir, identifier = custom_logging_setup(args)
# Tensorboard logging setup
# writer = SummaryWriter(log_dir=os.path.join(save_dir, 'tb', args.description, identifier))
# Check if cuda is available
cuda_available, device = check_cuda()
logging.info(f'cuda_available: {cuda_available}')
properties = {"latent_space_dim":args.tnet_dim,
"explicit_time": args.explicit_time,
"a":args.lsddm_a,
"projfn":args.lsddm_projfn,
"projfn_eps":args.lsddm_projfn_eps,
"smooth_v":args.lsddm_smooth_v,
"hp":args.lsddm_hp,
"h":args.lsddm_h,
"rehu":args.lsddm_rehu,
"device": device,
"fhat_layers": args.fhat_layers}
# Extract the list of demonstrations from the text file
# containing the sequence of demonstrations
seq = get_sequence(args.seq_file)
num_tasks = len(seq)
eval_resuts=None
for task_id in range(num_tasks):
# The NODE uses the target network as the RHS of its
# differential equation
if args.explicit_time==1:
properties["explicit_time"] = args.explicit_time
target_network = configure_t(properties)
elif args.explicit_time==0:
target_network = configure(properties)
node = NODE(target_network=target_network, method='euler', explicit_time=args.explicit_time, verbose=True).to(device)
logging.info(f'#### Training started for task_id: {task_id} (task {task_id+1} out of {num_tasks}) ###')
# Train on the current task_id
node, duration, best_loss, best_iter = train_task(args=args, task_id=task_id, tnet=target_network, node=node, device=device, writer=None)
logging.info(f'task_id: {task_id}, best_loss: {best_loss:.3E}, best_iter: {best_iter}')
# At the end of every task store the latest networks
logging.info('Saving models')
torch.save(node, os.path.join(save_dir, 'models', f'node_{task_id}.pth'))
logging.info('Training done')
# writer.close()
return save_dir
def eval_all(args, save_dir):
"""
Evaluates all saved models after training for
all tasks is complete
"""
# Check if cuda is available
cuda_available, device = check_cuda()
logging.info(f'cuda_available: {cuda_available}')
# Dict for storing evaluation results
# This will be written to a json file in the log folder
eval_results = dict()
# For storing command line arguments for this run
eval_results['args'] = read_dict(os.path.join(save_dir, 'commandline_args.json'))
# For storing the evaluation results
eval_results['data'] = {'metrics': dict(), 'metric_errors': dict()}
# Extract the list of demonstrations from the text file
# containing the sequence of demonstrations
seq = get_sequence(args.seq_file)
num_tasks = len(seq)
if args.plot_traj==1:
# After the last task has been trained, we create a plot
# showing the performance on all the tasks
figw, figh = args.figw, args.figh
plt.subplots_adjust(left=1/figw, right=1-1/figw, bottom=1/figh, top=1-1/figh)
fig, axes = plt.subplots(figsize=(figw, figh),
sharey=False,
sharex=False,
ncols=num_tasks if num_tasks<=10 else (num_tasks//2),
nrows=1 if num_tasks<=10 else 2,
subplot_kw={'aspect': 1 if args.plot_vectorfield==1 else 'auto',
'projection': 'rectilinear' if args.plot_vectorfield==1 else '3d'})
properties = {"latent_space_dim":args.tnet_dim,
"explicit_time": args.explicit_time,
"a":args.lsddm_a,
"projfn":args.lsddm_projfn,
"projfn_eps":args.lsddm_projfn_eps,
"smooth_v":args.lsddm_smooth_v,
"hp":args.lsddm_hp,
"h":args.lsddm_h,
"rehu":args.lsddm_rehu,
"device": device,
"fhat_layers": args.fhat_layers}
for task_id in range(num_tasks):
logging.info(f'#### Evaluation started for task_id: {task_id} (task {task_id+1} out of {num_tasks}) ###')
eval_results['data']['metrics'][f'train_task_{task_id}'] = dict()
eval_results['data']['metric_errors'][f'train_task_{task_id}'] = dict()
# Load the network for the current task_id
if args.explicit_time==1:
properties["explicit_time"] = args.explicit_time
target_network = configure_t(properties)
elif args.explicit_time==0:
target_network = configure(properties)
node = NODE(target_network=target_network, method='euler', explicit_time=args.explicit_time).to(device)
node = torch.load(os.path.join(save_dir, 'models', f'node_{task_id}.pth'))
r, c = 0, 0
# Each network is only evaluated on the task it is trained on
eval_task_id = task_id
# Evaluate on all the past and current task_ids
logging.info(f'Loaded network trained on task {task_id}, evaluating on task {eval_task_id}')
# Figure is plotted only for the last task
eval_traj_metrics, eval_traj_metric_errors, plot_data = eval_task(args, eval_task_id, node, device)
if args.plot_traj==1:
# Plot the trajectories for the current trained model
# on the correct axis
# Read the task names to use in the plot
#task_names_map = read_dict(args.task_names_path)
r = 1 if num_tasks<=10 else eval_task_id//(num_tasks//2)
c = eval_task_id if num_tasks<=10 else eval_task_id%(num_tasks//2)
if num_tasks == 1:
ax = axes
elif num_tasks<=10:
ax = axes[c]
else:
ax = axes[r][c]
# handles, labels = plot_ode_simple(t, y_all, ode_rhs, y_hat, ax=ax, explicit_time=args.explicit_time)
streamplot(t=plot_data['t'],
y_all=plot_data['y_all'],
y_hat=plot_data['y_hat'],
ode_rhs=node.target_network,
V=node.target_network.V,
L=1,
ax=ax,
fontsize=10,
device=device,
limit=4.0,
alpha=0.6,
explicit_time=args.explicit_time,
plot_vectorfield=args.plot_vectorfield
)
# name = list(task_names_map.values())[eval_task_id]
ax.set_title(task_id, fontsize=args.plot_fs)
# Remove axis labels and ticks
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.xaxis.get_label().set_visible(False)
ax.yaxis.get_label().set_visible(False)
logging.info(f'Evaluated trajectory metrics: {eval_traj_metrics}')
# Store the evaluated metrics
eval_results['data']['metrics'][f'train_task_{task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metrics
eval_results['data']['metric_errors'][f'train_task_{task_id}'][f'eval_task_{eval_task_id}'] = eval_traj_metric_errors
if args.plot_vectorfield == 1 and args.plot_traj==1:
fig.legend(loc='lower center', fontsize=args.plot_fs, ncol=4)
fig.subplots_adjust(hspace=-0.2, wspace=0.1)
# Save the evaluation plot
if args.plot_vectorfield == 1 and args.plot_traj==1:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'), bbox_inches='tight')
else:
plt.savefig(os.path.join(save_dir, f'plot_trajectories_{args.description}.pdf'))
# Write the evaluation results to a file in the log dir
write_dict(os.path.join(save_dir, 'eval_results.json'), eval_results)
logging.info('All evaluation done')
if __name__ == '__main__':
# Parse commandline arguments
args = parse_args()
# Set the seed for reproducability
set_seed(args.seed)
# Training
save_dir = train_all(args)
# Evaluation
args = Dictobject(read_dict(os.path.join(save_dir, 'commandline_args.json')))
if args.dummy_run == 0:
eval_all(args, save_dir)
logging.info('Completed')