-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathclean_windows.m
165 lines (158 loc) · 8.41 KB
/
clean_windows.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function [signal,sample_mask] = clean_windows(signal,max_bad_channels,zthresholds,window_len,window_overlap,max_dropout_fraction,min_clean_fraction,truncate_quant,step_sizes,shape_range)
% Remove periods with abnormally high-power content from continuous data.
% [Signal,Mask] = clean_windows(Signal,MaxBadChannels,PowerTolerances,WindowLength,WindowOverlap,MaxDropoutFraction,Min)
%
% This function cuts segments from the data which contain high-power artifacts. Specifically,
% only windows are retained which have less than a certain fraction of "bad" channels, where a channel
% is bad in a window if its power is above or below a given upper/lower threshold (in standard
% deviations from a robust estimate of the EEG power distribution in the channel).
%
% In:
% Signal : Continuous data set, assumed to be appropriately high-passed (e.g. >1Hz or
% 0.5Hz - 2.0Hz transition band)
%
% MaxBadChannels : The maximum number or fraction of bad channels that a retained window may still
% contain (more than this and it is removed). Reasonable range is 0.05 (very clean
% output) to 0.3 (very lax cleaning of only coarse artifacts). Default: 0.2.
%
% PowerTolerances: The minimum and maximum standard deviations within which the RMS of a channel
% must lie (relative to a robust estimate of the clean EEG RMS distribution in
% the channel) for it to be considered "not bad". Default: [-3.5 5].
%
% The following are detail parameters that usually do not have to be tuned. If you can't get
% the function to do what you want, you might consider adapting these to your data.
%
% WindowLength : Window length that is used to check the data for artifact content. This is
% ideally as long as the expected time scale of the artifacts but not shorter
% than half a cycle of the high-pass filter that was used. Default: 1.
%
% WindowOverlap : Window overlap fraction. The fraction of two successive windows that overlaps.
% Higher overlap ensures that fewer artifact portions are going to be missed (but
% is slower). (default: 0.66)
%
% MaxDropoutFraction : Maximum fraction that can have dropouts. This is the maximum fraction of
% time windows that may have arbitrarily low amplitude (e.g., due to the
% sensors being unplugged). (default: 0.1)
%
% MinCleanFraction : Minimum fraction that needs to be clean. This is the minimum fraction of time
% windows that need to contain essentially uncontaminated EEG. (default: 0.25)
%
%
% The following are expert-level parameters that you should not tune unless you fully understand
% how the method works.
%
% TruncateQuantile : Truncated Gaussian quantile. Quantile range [upper,lower] of the truncated
% Gaussian distribution that shall be fit to the EEG contents. (default: [0.022 0.6])
%
% StepSizes : Grid search stepping. Step size of the grid search, in quantiles; separately for
% [lower,upper] edge of the truncated Gaussian. The lower edge has finer stepping
% because the clean data density is assumed to be lower there, so small changes in
% quantile amount to large changes in data space. (default: [0.01 0.01])
%
% ShapeRange : Shape parameter range. Search range for the shape parameter of the generalized
% Gaussian distribution used to fit clean EEG. (default: 1.7:0.15:3.5)
%
% Out:
% Signal : data set with bad time periods removed.
%
% Mask : mask of retained samples (logical array)
%
% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD
% 2010-07-06
% Copyright (C) Christian Kothe, SCCN, 2010, [email protected]
%
% History
% 04/26/2017 Makoto. Changed action When EEG.etc.clean_sample_mask is present,
%
% This program is free software; you can redistribute it and/or modify it under the terms of the GNU
% General Public License as published by the Free Software Foundation; either version 2 of the
% License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
% even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License along with this program; if not,
% write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
% USA
% handle inputs
if ~exist('max_bad_channels','var') || isempty(max_bad_channels) max_bad_channels = 0.2; end
if ~exist('zthresholds','var') || isempty(zthresholds) zthresholds = [-3.5 5]; end
if ~exist('window_len','var') || isempty(window_len) window_len = 1; end
if ~exist('window_overlap','var') || isempty(window_overlap) window_overlap = 0.66; end
if ~exist('max_dropout_fraction','var') || isempty(max_dropout_fraction) max_dropout_fraction = 0.1; end
if ~exist('min_clean_fraction','var') || isempty(min_clean_fraction) min_clean_fraction = 0.25; end
if ~exist('truncate_quant','var') || isempty(truncate_quant) truncate_quant = [0.022 0.6]; end
if ~exist('step_sizes','var') || isempty(step_sizes) step_sizes = [0.01 0.01]; end
if ~exist('shape_range','var') || isempty(shape_range) shape_range = 1.7:0.15:3.5; end
if ~isempty(max_bad_channels) && max_bad_channels > 0 && max_bad_channels < 1 %#ok<*NODEF>
max_bad_channels = round(size(signal.data,1)*max_bad_channels); end
signal.data = double(signal.data);
[C,S] = size(signal.data);
N = window_len*signal.srate;
wnd = 0:N-1;
offsets = round(1:N*(1-window_overlap):S-N);
fprintf('Determining time window rejection thresholds...');
% for each channel...
for c = C:-1:1
% compute RMS amplitude for each window...
X = signal.data(c,:).^2;
X = sqrt(sum(X(bsxfun(@plus,offsets,wnd')))/N);
% robustly fit a distribution to the clean EEG part
[mu,sig] = fit_eeg_distribution(X, ...
min_clean_fraction, max_dropout_fraction, ...
truncate_quant, step_sizes,shape_range);
% calculate z scores relative to that
wz(c,:) = (X - mu)/sig;
end
disp('done.');
% sort z scores into quantiles
swz = sort(wz);
% determine which windows to remove
remove_mask = false(1,size(swz,2));
if max(zthresholds)>0
remove_mask(swz(end-max_bad_channels,:) > max(zthresholds)) = true; end
if min(zthresholds)<0
remove_mask(swz(1+max_bad_channels,:) < min(zthresholds)) = true; end
removed_windows = find(remove_mask);
% find indices of samples to remove
removed_samples = repmat(offsets(removed_windows)',1,length(wnd))+repmat(wnd,length(removed_windows),1);
% mask them out
sample_mask = true(1,S);
sample_mask(removed_samples(:)) = false;
fprintf('Keeping %.1f%% (%.0f seconds) of the data.\n',100*(mean(sample_mask)),nnz(sample_mask)/signal.srate);
% determine intervals to retain
retain_data_intervals = reshape(find(diff([false sample_mask false])),2,[])';
retain_data_intervals(:,2) = retain_data_intervals(:,2)-1;
% apply selection
try
signal = pop_select(signal, 'point', retain_data_intervals);
catch e
if ~exist('pop_select','file')
disp('Apparently you do not have EEGLAB''s pop_select() on the path.');
else
disp('Could not select time windows using EEGLAB''s pop_select(); details: ');
hlp_handleerror(e,1);
end
%disp('Falling back to a basic substitute and dropping signal meta-data.');
warning('Falling back to a basic substitute and dropping signal meta-data.');
signal.data = signal.data(:,sample_mask);
signal.pnts = size(signal.data,2);
signal.xmax = signal.xmin + (signal.pnts-1)/signal.srate;
[signal.event,signal.urevent,signal.epoch,signal.icaact,signal.reject,signal.stats,signal.specdata,signal.specicaact] = deal(signal.event([]),signal.urevent([]),[],[],[],[],[],[]);
end
% if isfield(signal.etc,'clean_sample_mask')
% signal.etc.clean_sample_mask(signal.etc.clean_sample_mask) = sample_mask;
% else
% signal.etc.clean_sample_mask = sample_mask;
% end
if isfield(signal.etc,'clean_sample_mask')
oneInds = find(signal.etc.clean_sample_mask == 1);
if length(oneInds) == length(sample_mask)
signal.etc.clean_sample_mask(oneInds) = sample_mask;
else
disp('Warning: EEG.etc.clean_sample is present. It is overwritten.');
end
else
signal.etc.clean_sample_mask = sample_mask;
end