-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathpop_limo.m
184 lines (173 loc) · 8.7 KB
/
pop_limo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
% POP_LIMO - prepare and convert EEGLAB data and structure to be
% processed by LIMO.
%
% Usage:
% >> STUDY = pop_limo( STUDY, ALLEEG, 'key', val)
% >> STUDY = pop_limo( STUDY, ALLEEG, 'dat', 'key', val)
% >> STUDY = pop_limo( STUDY, ALLEEG, 'ica', 'key', val)
%
% Inputs:
% STUDY - an EEGLAB STUDY set of loaded EEG structures
% ALLEEG - ALLEEG vector of one or more loaded EEG dataset structures
% 'dat'|'ica' - show the interface for data channels or for ICA. The
% default is to use data.
%
% Optional inputs: same as STD_LIMO
%
% Graphical interface:
% "See GLM factors" - [push button] See all the GLM factors or columns in
% the design matrix. This list depends on your study
% design. Adding contrast will change this list. In
% practice, it is important to understand that every
% single factor will be fitted by the GLM, and the choice
% of these factors is critical. It is recommended to
% include as many factors as possible, especially because
% this allows you to define new contrast later on without
% having to recompute the GLM on each subject (as long as
% these new contrast do not involve new factors).
%
% "Interaction model for categorical indep. var." - When using more than
% one categorical variable, clicking this option forces
% to have factors which are the conjunction of the
% different independent var. values. This is useful only
% if you want to calculate interactions at the subject.
% The 'best' option is typically to have a design with
% all conditions (no factors) and create factors at the
% group level.
%
% "Split regressions (continuous indep. var.)" - This options allows to
% split continuous variables for the different
% categorical variables. This is useful to compute
% interaction between continuous and categorical
% variables.
%
% "Input data to use for the GLM" - [pop up menu] measure to use as input
% for the GLM. Currently, only "ERP" and "spectrum" are
% supported.
%
% "Optimization method" - [pop up menu] may be Ordinary Least Squares (OLS),
% Weighted Least Squares (WLS), or Iterative Reweighted Least
% Squares. WTS should be used as it is more robust to trials
% with different time course. OLS is a standard solution and
% WLS/IRLS are solution that automatically weight down outliers
% (trials/data point).
%
% "Options" - [edit box] additional options. These are given
% directly as input to the std_limo.m function. They may
% be ['freqlim', value] frequency trimming in Hz or
% ['timelim', value] time trimming in millisecond. These
% allow to speed up computation by not including all the
% data as input. Example: 'timelim', [-50 650] only
% include data within the -50 ms and 650 ms for ERPs.
%
% "Erase previous model" - [checkbox] erase previous model for this
% measure.
%
% Outputs:
% STUDY - an EEGLAB STUDY set of loaded EEG structures
%
% Author: Arnaud Delorme, SCCN, UCSD, 2015-
% Cyril Pernet, LIMO Team - edit info and defaults
%
% See also: STD_LIMO
% Copyright (C) Arnaud Delorme
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [STUDY,com,limofiles] = pop_limo(STUDY, ALLEEG, measureflag, varargin)
if nargin < 2
help pop_limo;
return;
end
com = '';
if nargin > 2
if strcmpi(measureflag,'dat')
measureflagindx = 1;
elseif strcmpi(measureflag,'ica')
measureflagindx = 2;
else
varargin = { measureflag varargin{:} };
measureflagindx = 1;
end
else
measureflagindx = 1;
end
% check for empty relative paths
for iSet = 1:length(STUDY.datasetinfo)
if isempty(STUDY.datasetinfo(iSet).filepath)
STUDY.datasetinfo(iSet).filepath = STUDY.filepath;
ALLEEG(iSet).filepath = STUDY.filepath;
end
end
% check that channel location are present
ALLEEG = eeg_checkset(ALLEEG, 'chanloc');
if isfield(STUDY, 'group') && length(STUDY.group) > 1
warndlg2([ 'Your STUDY have groups of subjects. This will only be relevant' 10 ...
'for 2nd-level LIMO analysis and will be ignored at the 1st' 10 ...
'(single subject) level.'] );
end
if nargin < 4
dataMeasures = { 'ERP' 'Spectrum' 'ERSP'};
fileMeasures = { 'daterp' 'datspec' 'dattimef'; 'icaerp' 'icaspec' 'icatimef'};
methods = { 'WLS' 'OLS' 'IRLS'};
cb_measure = [ 'if get(gcbo, ''value'') == 1,' ...
' set(findobj(gcbf, ''tag'', ''options''), ''string'', '''');' ...
'else,' ...
' set(findobj(gcbf, ''tag'', ''options''), ''string'', ''''''freqlim'''', [1 25]'');' ...
'end;' ];
cb_listfactors = [ 'pop_listfactors(STUDY.design(STUDY.currentdesign), ''gui'', ''on'', ' ...
'''level'', ''both'',' ...
'''splitreg'' , fastif(get(findobj(gcbf, ''tag'', ''splitreg'' ), ''value''), ''on'', ''off''),' ...
'''interaction'', fastif(get(findobj(gcbf, ''tag'', ''interaction''), ''value''), ''on'', ''off''));' ];
uilist = { ...
{'style' 'text' 'string' 'LInear MOdeling of EEG data' 'fontweight' 'bold' 'fontsize', 12} ...
{'style' 'pushbutton' 'string' 'See GLM variables' 'callback' cb_listfactors } ...
{'style' 'checkbox' 'string' 'Split regressions (continuous indep. var.)' 'tag' 'splitreg' } {} ...
{'style' 'text' 'string' 'Input data to use for the GLM' } ...
{'style' 'popupmenu' 'string' dataMeasures 'tag' 'measure' 'callback' cb_measure} ...
{'style' 'text' 'string' 'Estimation method' } ...
{'style' 'popupmenu' 'string' methods 'tag' 'method' } ...
{'style' 'text' 'string' 'Options' } ...
{'style' 'edit' 'string' '' 'tag' 'options' } ...
{'style' 'checkbox' 'string' 'Erase previous model' 'tag' 'erase' 'value' true } ...
};
cline = [1.1 0.8];
geometry = { [1.6 1] 1 1 cline cline cline 1 };
geomvert = [ 1 1 1 1 1 1 1 ];
[out_param userdat tmp res] = inputgui( 'geometry' , geometry, 'uilist', uilist, 'geomvert', geomvert, ...
'title', 'LInear MOdeling of EEG data -- pop_limo()', 'helpcom', 'pophelp(''pop_limo'');');
if isempty(res), return; end
opttmp = eval( [ '{ ' res.options ' }' ]);
if length(opttmp) > 0 && isnumeric(opttmp{1})
error([ 'Wrong options. Options must be in the format' 10 '''key'', val. For example ''timelim'', [-100 600]' ]);
end
options = { 'method' methods{res.method} 'measure' fileMeasures{measureflagindx,res.measure} opttmp{:} ...
'erase' fastif(res.erase, 'on', 'off') ...
'splitreg' fastif(res.splitreg, 'on', 'off') };
else
options = varargin;
end
[STUDY,limofiles] = std_limo(STUDY, ALLEEG, options{:});
com = sprintf('pop_limo(STUDY, ALLEEG, %s);', vararg2str(options));