-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathljar_md.m
499 lines (401 loc) · 13.5 KB
/
ljar_md.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
function sys = matlab_ljmd()
%
% simple lennard-jones potential MD code with velocity verlet.
% units: Length=Angstrom, Mass=amu; Energy=kcal
%
% Code ported from Axel Kohlmeyer's Parallel LJMD code availiable
% at http://sites.google.com/site/akohlmey/software/ljmd
%
% I've retained as much of the variable naming conventions and
% format as possible so as to be comparable to the original code
% and easily updated / changed. However, in changing to matlab
% there are a number of optimized vector based functions that could likely
% improve the performace. I leave that to the user.
% -Chris MacDermaid
% To run, just make sure you are in the directory containg this
% file, and the restart file. Make sure you have the correct box
% dimensions and number of atoms and type: matlab_ljmd
%schuberm added verlet, velrescale, genvel, steep, conjgrad
%% Change format to long double precision
format long;
set(0,'RecursionLimit',1000)
%% Declare some necessary constants and globals
global kboltz mvsq2e sys
kboltz = 0.0019872067; % Boltzman constant in kcal/mol/K
mvsq2e = 2390.05736153349; % m*v^2 in kcal/mol
%% Declare some variables for tracking energetics
sys.ekin = 0.0; % Kinetic Energy
sys.epot = 0.0; % Potential Energy
sys.temp = 0.0; % System Temperature (microcanonical ensemble)
sys.nfi = 1; %Step Counter
%%%%%%%%%%%%%%%%%%%%%
%% Begin User Input%%
%%%%%%%%%%%%%%%%%%%%%
%% System Dependent
sys.natoms = 108; % Number of atoms
sys.mass = 39.948; % Argon Mass in AMU
sys.epsilon = 0.2379; % epsilon in kcal/mol
sys.sigma = 3.405; % sigma in angstrom
sys.rcut = 12.0; % rcut in angstrom
sys.box = 17.1580; % Box Length in angstrom
sys.nsteps = 10000; % number of MD timesteps
sys.dt = 5.0; % Timesteps in fs
nprint = 100; % Output Frequency (number of MD steps)
sys.contemp = 200;
%% Output Files
sys.restfile = 'argon_108.rest'; %Restart File
sys.trajfile = 'argon_108.xyz'; %Trajectory
sys.ergfile = 'argon_108.dat'; %energies
sys.congfile = 'conjgrad_108.dat'
sys.force = 'forces.dat'
sys.equil = 'equilpos.dat'
sys.precision = 1e-6
%%%%%%%%%%%%%%%%%%%
%% End User Input%%
%%%%%%%%%%%%%%%%%%%
%% Initilize arrays for storage.
% Position
sys.rx = zeros(1,sys.natoms);
sys.ry = zeros(1,sys.natoms);
sys.rz = zeros(1,sys.natoms);
sys.rxk = zeros(1,sys.natoms);
sys.ryk = zeros(1,sys.natoms);
sys.rzk = zeros(1,sys.natoms);
sys.rxk1 = zeros(1,sys.natoms);
sys.ryk1 = zeros(1,sys.natoms);
sys.rzk1 = zeros(1,sys.natoms);
% Velocity
sys.vx = zeros(1,sys.natoms);
sys.vy = zeros(1,sys.natoms);
sys.vz = zeros(1,sys.natoms);
% Force
sys.fx = zeros(1,sys.natoms);
sys.fy = zeros(1,sys.natoms);
sys.fz = zeros(1,sys.natoms);
sys.fxk = zeros(1,sys.natoms);
sys.fyk = zeros(1,sys.natoms);
sys.fzk = zeros(1,sys.natoms);
sys.fk = zeros(sys.natoms,3);
sys.fk1 = zeros(sys.natoms,3);
sys.r= zeros(sys.natoms,3);
sys.h = zeros(sys.natoms,3);
%% Read the restart file:
fid=fopen(sys.restfile, 'r');
[A,count] = fscanf(fid,'%f %f %f', [3 inf]);
fclose(fid);
%% Fill the r and v arrays with the restart info
sys.rx = A(1,[1:sys.natoms]);
sys.ry = A(2,[1:sys.natoms]);
sys.rz = A(3,[1:sys.natoms]);
sys.vx = A(1,[sys.natoms + 1:sys.natoms * 2]);
sys.vy = A(2,[sys.natoms + 1:sys.natoms * 2]);
sys.vz = A(3,[sys.natoms + 1:sys.natoms * 2]);
%% Open the log and trajectory files for writing
erg = fopen(sys.ergfile, 'w');
traj = fopen(sys.trajfile, 'w');
conjg = fopen(sys.congfile, 'w');
cg = fopen (sys.force, 'w');
equil = fopen (sys.equil, 'w');
%% Initilize our values of force / kinetic energy and output
%initial values
force();
genvel();
ekin();
fprintf('Starting simulation with %d atoms for %d steps.\n',sys.natoms, sys.nsteps);
fprintf(' NFI TEMP EKIN EPOT ETOT\n');
output(erg,traj);
%% The Main MD Loop
for i = 1 : 1 : sys.nsteps
sys.nfi = i;
%% Output?
if mod(i,nprint) == 0; output(erg,traj); end;
sys.rxk=sys.rxk1;
sys.ryk=sys.ryk1;
sys.rzk=sys.rzk1;
sys.rxk1=sys.rx;
sys.ryk1=sys.ry;
sys.rzk1=sys.rz;
%Propogate and recompute Energies
if sys.nfi < 501
velverlet();
%velrescale();
else
%velrescale();
verlet();
end
ekin();
%velrescale();
if mod(i,nprint) == 0; velrescale(); end
end
%Set up minimization
sys.fxk(:)=sys.fx(:);
sys.fyk(:)=sys.fy(:);
sys.fzk(:)=sys.fz(:);
sys.fk1(:,:)=[sys.fx(:),sys.fy(:),sys.fz(:)];
velverlet();
force();
sys.fk(:,:)=[sys.fx(:),sys.fy(:),sys.fz(:)];
sys.r(:,:)=[sys.rx(:),sys.ry(:),sys.rz(:)];
sys.l = 0;
%while sqrt(max(abs(sys.fx(:)))^2+max(abs(sys.fy(:)))^2+max(abs(sys.fz(:)))^2)>10*sys.precision
%while abs(max(norm(sys.fk))-max(norm(sys.fk1))) > 10*sys.precision
%while abs(max(norm(sys.fk))) > 10*sys.precision
%tic
%steep(conjg);
%conjgrad(conjg,cg,equil);
%toc
%end
for i = 1 : 1 : sys.natoms
fprintf(cg, 'Ar %20.8f %20.8f %20.8f\n', sys.fx(i), ...
sys.fy(i), sys.fz(i));
end
for i = 1 : 1 : sys.natoms
fprintf(equil, 'Ar %20.8f %20.8f %20.8f\n', sys.rx(i), ...
sys.ry(i), sys.rz(i));
end
%% Cleanup
fclose(equil);
fclose(cg);
fclose(conjg);
fclose(erg);
fclose(traj);
% Minimum image convention helper
function x = pbc(x, boxby2, box)
while x > boxby2; x = x - box ;end
while x < -boxby2; x = x + box;end
% Compute the kinetic energy of our system
function ekin()
global kboltz mvsq2e sys
%% Clear kinetic energy
sys.ekin = 0;
for i = 1 : 1 : sys.natoms
sys.ekin = sys.ekin + sys.vx(i)*sys.vx(i) ...
+ sys.vy(i)*sys.vy(i) ...
+ sys.vz(i)*sys.vz(i);
end
sys.ekin = sys.ekin * 0.5 * mvsq2e * sys.mass;
sys.temp = 2.0 * sys.ekin / (3.0 * sys.natoms - 3.0) / kboltz;
% Compute Forces on Atoms
function force()
global sys
%% Define some variables for the force calculation
%% ahead of time to save on computations
ffac = 0.0;
c12 = 4.0 * sys.epsilon * sys.sigma ^ 12;
c6 = 4.0 * sys.epsilon * sys.sigma ^ 6;
boxby2 = 0.5 * sys.box;
rcsq = sys.rcut * sys.rcut;
%% zero out our force arrays
sys.fx = zeros(1,sys.natoms);
sys.fy = zeros(1,sys.natoms);
sys.fz = zeros(1,sys.natoms);
%% Clear the potential energy
sys.epot = 0.0;
for i = 1 : 1 : sys.natoms - 1
rx1 = sys.rx(i);
ry1 = sys.ry(i);
rz1 = sys.rz(i);
for j = i + 1 : 1 : sys.natoms
rx = rx1 - sys.rx(j);
ry = ry1 - sys.ry(j);
rz = rz1 - sys.rz(j);
% apply PBC
while rx > boxby2; rx = rx - sys.box; end
while rx < -boxby2; rx = rx + sys.box; end
while ry > boxby2; ry = ry - sys.box; end
while ry < -boxby2; ry = ry + sys.box; end
while rz > boxby2; rz = rz - sys.box; end
while rz < -boxby2; rz = rz + sys.box; end
rsq = rx * rx + ry * ry + rz * rz;
if rsq < rcsq
rinv = 1.0 / rsq;
r6 = rinv * rinv * rinv;
ffac = (12.0 * c12 * r6 - 6.0 * c6) * r6 * rinv;
sys.epot = sys.epot + r6 * (c12 * r6 - c6);
%% Apply Newton's third law
sys.fx(i) = sys.fx(i) + rx*ffac;
sys.fy(i) = sys.fy(i) + ry*ffac;
sys.fz(i) = sys.fz(i) + rz*ffac;
sys.fx(j) = sys.fx(j) - rx*ffac;
sys.fy(j) = sys.fy(j) - ry*ffac;
sys.fz(j) = sys.fz(j) - rz*ffac;
end
end
end
function buck()
global sys
%% Define some variables for the force calculation
%% ahead of time to save on computations
ffac = 0.0;
boxby2 = 0.5 * sys.box;
rcsq = sys.rcut * sys.rcut;
a=1.69e-8*6.241509*10^11*23.06055;
b=1/0.273*6.241509*10^11*23.06055;
c=102e-12*6.241509*10^11*23.06055;
%% zero out our force arrays
sys.fx = zeros(1,sys.natoms);
sys.fy = zeros(1,sys.natoms);
sys.fz = zeros(1,sys.natoms);
%% Clear the potential energy
sys.epot = 0.0;
for i = 1 : 1 : sys.natoms - 1
rx1 = sys.rx(i);
ry1 = sys.ry(i);
rz1 = sys.rz(i);
for j = i + 1 : 1 : sys.natoms
rx = rx1 - sys.rx(j);
ry = ry1 - sys.ry(j);
rz = rz1 - sys.rz(j);
% apply PBC
while rx > boxby2; rx = rx - sys.box; end
while rx < -boxby2; rx = rx + sys.box; end
while ry > boxby2; ry = ry - sys.box; end
while ry < -boxby2; ry = ry + sys.box; end
while rz > boxby2; rz = rz - sys.box; end
while rz < -boxby2; rz = rz + sys.box; end
rsq = rx * rx + ry * ry + rz * rz;
if rsq < rcsq
%rinv = 1.0 / rsq;
%r6 = rinv * rinv * rinv;
ffac = (-b*a*exp(-b*sqrt(rsq)))+6*c*sqrt(rsq)^(-7);
sys.epot = sys.epot + a*exp(-b*sqrt(rsq))-c/sqrt(rsq)^(-6);
%% Apply Newton's third law
sys.fx(i) = sys.fx(i) + rx*ffac;
sys.fy(i) = sys.fy(i) + ry*ffac;
sys.fz(i) = sys.fz(i) + rz*ffac;
sys.fx(j) = sys.fx(j) - rx*ffac;
sys.fy(j) = sys.fy(j) - ry*ffac;
sys.fz(j) = sys.fz(j) - rz*ffac;
end
end
end
%% Velocity Verlet
function velverlet()
global mvsq2e sys
dtmf = 0.5 * sys.dt / mvsq2e / sys.mass;
%% Propagate velocities by half step and positions by full step
for i = 1 : 1 : sys.natoms
% Vels
sys.vx(i) = sys.vx(i) + dtmf * sys.fx(i);
sys.vy(i) = sys.vy(i) + dtmf * sys.fy(i);
sys.vz(i) = sys.vz(i) + dtmf * sys.fz(i);
%Pos
sys.rx(i) = sys.rx(i) + sys.dt * sys.vx(i);
sys.ry(i) = sys.ry(i) + sys.dt * sys.vy(i);
sys.rz(i) = sys.rz(i) + sys.dt * sys.vz(i);
end
%% Compute our forces and PE
%force();
buck();
%% Propagate velocities for the remainining half step
for i = 1 : 1 : sys.natoms
sys.vx(i) = sys.vx(i) + dtmf * sys.fx(i);
sys.vy(i) = sys.vy(i) + dtmf * sys.fy(i);
sys.vz(i) = sys.vz(i) + dtmf * sys.fz(i);
end
function verlet()
global mvsq2e sys
dtmf = sys.dt^2 / mvsq2e / (sys.mass);
for i = 1 : 1 : sys.natoms
sys.rx(i) =2*sys.rxk1(i)-sys.rxk(i) + (dtmf) * sys.fx(i);
sys.ry(i) =2*sys.ryk1(i)-sys.ryk(i) + (dtmf) * sys.fy(i);
sys.rz(i) =2*sys.rzk1(i)-sys.rzk(i) + (dtmf) * sys.fz(i);
sys.vx(i) = (sys.rxk1(i)-sys.rxk(i))/(sys.dt);
sys.vy(i) = (sys.ryk1(i)-sys.ryk(i))/(sys.dt);
sys.vz(i) = (sys.rzk1(i)-sys.rzk(i))/(sys.dt);
end
%force();
buck();
function genvel()
global kboltz mvsq2e sys
t=sqrt(3*sys.contemp*kboltz/mvsq2e/sys.mass)
for i = 1 : 1 : sys.natoms
sys.vx(i) = (-1.+2.*rand())*t;
sys.vy(i) = (-1.+2.*rand())*t;
sys.vz(i) = (-1.+2.*rand())*t;
end
if sum(sys.vx(:))+sum(sys.vy(:))+sum(sys.vz(:))>1E-10
genvel();
end
function velrescale()
global kboltz mvsq2e sys
ekin();
for i = 1 : 1 : sys.natoms
sys.vx(i) = sqrt(sys.contemp/sys.temp)*sys.vx(i);
sys.vy(i) = sqrt(sys.contemp/sys.temp)*sys.vy(i);
sys.vz(i) = sqrt(sys.contemp/sys.temp)*sys.vz(i);
end
function steep(conjg)
global kboltz mvsq2e sys
eta=0.01;
while max(abs(sys.fx(:))) > sys.precision
sys.rx(:) = sys.rx(:)+eta*sys.fx(:);
force();
end
while max(abs(sys.fy(:))) > sys.precision
sys.ry(:) = sys.ry(:)+eta*sys.fy(:);
force();
end
while max(abs(sys.fz(:))) > sys.precision
sys.rz(:) = sys.rz(:)+eta*sys.fz(:);
force();
end
sys.l=sys.l+1;
fprintf(conjg, '% 8d % 20.8f\n', sys.l, ...
sqrt(max(abs(sys.fx(:)))^2+max(abs(sys.fy(:)))^2+max(abs(sys.fz(:)))^2));
function conjgrad(conjg,cg,equil)
global kboltz mvsq2e sys
eta=0.00001;
tic
sys.h(:,:) =sys.fk(:,:)+sum(sys.fk(:,:).*sys.fk(:,:),1)/sum(sys.fk1(:,:).*sys.fk1(:,:),1)*sys.h(:,:);
sys.r(:,:) = sys.r(:,:)+eta*sys.h(:,:);
sys.rx(:)=sys.r(:,1);
sys.ry(:)=sys.r(:,2);
sys.rz(:)=sys.r(:,3);
sys.fk1(:,:)=[sys.fx(:),sys.fy(:),sys.fz(:)];
force();
sys.fk(:,:)=[sys.fx(:),sys.fy(:),sys.fz(:)];
sys.l=sys.l+1;
fprintf(conjg, '% 8d % 20.8f\n', sys.l, ...
abs(max(norm(sys.fk))-max(norm(sys.fk1))));
figure(1);
data=load('conjgrad_108.dat');
plot(data(:,1),data(:,2));
toc
function [x] = cg(A,b,x)
r=b-A*x;
p=r;
rsold=r'*r;
for i=1:size(A)
Ap=A*p;
alpha=rsold/(p'*Ap);
x=x+alpha*p;
r=r-alpha*Ap;
rsnew=r'*r;
if sqrt(rsnew)<1e-10
break;
end
p=r+rsnew/rsold*p;
rsold=rsnew;
end
%% append data to output
function output(erg, traj)
global sys
fprintf(1,'% 8d % 20.8f % 20.8f % 20.8f % 20.8f\n', ...
sys.nfi, sys.temp, sys.ekin, sys.epot, sys.ekin + ...
sys.epot)
fprintf(erg, '% 8d % 20.8f % 20.8f % 20.8f % 20.8f\n', sys.nfi, ...
sys.temp, sys.ekin, sys.epot, sys.ekin + sys.epot);
fprintf(traj, '%d\n nfi=%d etot=%20.8f\n', ...
sys.natoms, sys.nfi, sys.ekin + sys.epot);
for i = 1 : 1 : sys.natoms
fprintf(traj, 'Ar %20.8f %20.8f %20.8f\n', sys.rx(i), ...
sys.ry(i), sys.rz(i));
end
% Plots
figure(1);
data=load('argon_108.dat');
subplot(2,2,1); plot(data(:,1),data(:,2)); grid on; xlabel('Timestep');ylabel('Temperature');
subplot(2,2,2); plot(data(:,1),data(:,3)); grid on; xlabel('Timestep');ylabel('Kinetic energy');
subplot(2,2,3); plot(data(:,1),data(:,4)); grid on; xlabel('Timestep');ylabel('Potential energy');
subplot(2,2,4); plot(data(:,1),data(:,5)); grid on; xlabel('Timestep');ylabel('Total energy');